The search functionality is under construction.

Author Search Result

[Author] Dongcheng WU(5hit)

1-5hit
  • Dynamically Constrained Vector Field Convolution for Active Contour Model

    Guoqi LIU  Zhiheng ZHOU  Shengli XIE  Dongcheng WU  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E96-D No:11
      Page(s):
    2500-2503

    Vector field convolution (VFC) provides a successful external force for an active contour model. However, it fails to extract the complex geometries, especially the deep concavity when the initial contour is set outside the object or the concave region. In this letter, dynamically constrained vector field convolution (DCVFC) external force is proposed to solve this problem. In DCVFC, the indicator function with respect to the evolving contour is introduced to restrain the correlation of external forces generated by different edges, and the forces dynamically generated by complex concave edges gradually make the contour move to the object. On the other hand, traditional vector field, a component of the proposed DCVFC, makes the evolving contour stop at the object boundary. The connections between VFC and DCVFC are also analyzed. DCVFC maintains desirable properties of VFC, such as robustness to initialization. Experimental results demonstrate that DCVFC snake provides a much better segmentation than VFC snake.

  • Improved Edge Boxes with Object Saliency and Location Awards

    Peijiang KUANG  Zhiheng ZHOU  Dongcheng WU  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2015/11/12
      Vol:
    E99-D No:2
      Page(s):
    488-495

    Recently, object-proposal methods have attracted more and more attention of scholars and researchers for its utility in avoiding exhaustive sliding window search in an image. Object-proposal method is inspired by a concept that objects share a common feature. There exist many object-proposal methods which are either in segmentation fashion or engineering categories depending on low-level feature. Among those object-proposal methods, Edge Boxes, which is based on the number of contours that a bounding box wholly contains, has the state of art performance. Since Edge Boxes sometimes misses proposing some obvious objects in some images, we propose an appropriate version of it based on our two observations. We call the appropriate version as Improved Edge Boxes. The first of our observations is that objects have a property which can help us distinguish them from the background. It is called object saliency. An appropriate way we employ to calculate object saliency can help to retrieve some objects. The second of our observations is that objects ‘prefer’ to appear at the center part of images. For this reason, a bounding box that appears at the center part of the image is likely to contain an object. These two observations are going to help us retrieve more objects while promoting the recall performance. Finally, our results show that given just 5000 proposals we achieve over 89% object recall but 87% in Edge Boxes at the challenging overlap threshold of 0.7. Further, we compare our approach to some state-of-the-art approaches to show that our results are more accurate and faster than those approaches. In the end, some comparative pictures are shown to indicate intuitively that our approach can find more objects and more accurate objects than Edge Boxes.

  • Bit-Express: A Loss Tolerant Network Transmission via Network Coding

    Kai PAN  Weiyang LIU  Dongcheng WU  Hui LI  

     
    PAPER-Communication Theory and Signals

      Vol:
    E98-A No:1
      Page(s):
    400-410

    Lossy communication networks may be one of the most challenging issues for Transmission Control Protocol (TCP), as random loss could be erroneously interpreted into congestion due to the original mechanism of TCP. Network coding (NC) promises significant improvement in such environment thanks to its ability to mix data across time and flows. Therefore, it has been proposed to combine with TCP called TCP-NC by MIT. In this paper, we dedicated to quantifying the R, a key parameter for redundant packets, and make it close to the loss rate as much as possible, which has not been considered in the previous research. All of these are done by the sender who is completely unconscious of the network situation. Simulation results by NS2 under both wired and wireless networks showed that our method retains all the advantages of TCP-NC, and meanwhile outperforms TCP-NC and the other TCP variants in time-varying lossy networks.

  • The Wire-Speed Multicast Switch Fabric Based on Distributive Lattice

    Fuxing CHEN  Weiyang LIU  Hui LI  Dongcheng WU  

     
    PAPER-Network

      Vol:
    E97-B No:7
      Page(s):
    1385-1394

    The traditional multicast switch fabrics, which were mainly developed from the unicast switch fabrics, currently are not able to achieve high efficiency and flexible large-scale scalability. In the light of lattice theory and multicast concentrator, a novel multistage interconnection multicast switch fabric is proposed in this paper. Comparing to traditional multicast switch fabrics, this multicast switch fabric has the advantages of superior scalability, wire-speed, jitter-free multicast with low delay, and no queuing buffer. This paper thoroughly analyzes the performance of the proposed multicast switch fabric with supporting priority-based multicast. Simulations on packet loss rate and delay are discussed and presented at normalized load. Moreover, a detailed FPGA implementation is given. Practical network traffic tests provide evidence supporting the feasibility and stability of the proposed fabric.

  • Towards High-Performance Load-Balance Multicast Switch via Erasure Codes

    Fuxing CHEN  Li MA  Weiyang LIU  Dagang LI  Dongcheng WU  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E98-B No:8
      Page(s):
    1518-1525

    Recent studies on switching fabrics mainly focus on the switching schedule algorithms, which aim at improving the throughput (a key performance metric). However, the delay (another key performance metric) of switching fabrics cannot be well guaranteed. A good switching fabric should be endowed with the properties of high throughput, delay guarantee, low component complexity and high-speed multicast, which are difficult for conventional switching fabrics to achieve. This has fueled great interest in designing a new switching fabric that can support large-scale extension and high-speed multicast. Motivated by this, we reuse the self-routing Boolean concentrator network and embed a model of multicast packet copy separation in front to construct a load-balanced multicast switching fabric (LB-MSF) with delay guarantee. The first phase of LB-MSF is responsible for balancing the incoming traffic into uniform cells while the second phase is in charge of self-routing the cells to their final destinations. In order to improve the throughput, LB-MSF is combined with the merits of erasure codes against packet loss. Experiments and analyses verify that the proposed fabric is able to achieve high-speed multicast switching and suitable for building super large-scale switching fabric in Next Generation Network(NGN) with all the advantages mentioned above. Furthermore, a prototype of the proposed switch is developed on FPGA, and presents excellent performance.