The search functionality is under construction.

Author Search Result

[Author] Eisuke SASAOKA(2hit)

1-2hit
  • High Performance Dispersion-Flattened Hybrid Optical Transmission Lines for Ultra-Large Capacity Transoceanic Systems

    Masao TSUKITANI  Eiji YANADA  Takatoshi KATO  Eisuke SASAOKA  Yoshinori MAKIO  

     
    PAPER

      Vol:
    E85-C No:4
      Page(s):
    903-909

    This paper describes design optimization and performances of hybrid optical transmission lines consisting of effective-area-enlarged pure silica core fiber and dispersion compensating fiber. As a result of the design optimization, considering low nonlinearity and good bending characteristic, the developed fibers exhibit a span average loss of 0.208 dB/km, a span average dispersion slope of 0.02 ps/nm2/km and low nonlinearity with an equivalent effective area of 60 µm2. Further optimization of the relationship among the nonlinearity, the dispersion slope and the bending characteristic enables perfectly dispersion-flattened hybrid optical transmission lines exhibiting a low transmission loss of 0.211 dB/km, low nonlinearity with an equivalent effective area of 60 µm2 and small dispersion deviation of 0.03 ps/nm/km in a wavelength band wider than 40 nm.

  • Behavior of Inter-Core Crosstalk as a Noise and Its Effect on Q-Factor in Multi-Core Fiber

    Tetsuya HAYASHI  Takashi SASAKI  Eisuke SASAOKA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E97-B No:5
      Page(s):
    936-944

    The stochastic behavior of inter-core crosstalk in multi-core fiber is discussed based on a theoretical model validated by measurements, and the effect of the crosstalk on the Q-factor in transmission systems, using multi-core fiber is investigated theoretically. The measurements show that the crosstalk rapidly changes with wavelength, and gradually changes with time, in obedience to the Gaussian distribution in I-Q planes. Therefore, the behavior of the crosstalk as a noise may depend on the bandwidth of the signal light. If the bandwidth is adequately broad, the crosstalk may behave as a virtual additive white Gaussian noise on I-Q planes, and the Q-penalty at the Q-factor of 9.8dB is less than 1dB when the statistical mean of the crosstalk from other cores is less than -16.7dB for PDM-QPSK, -23.7dB for PDM-16QAM, and -29.9dB for PDM-64QAM. If the bandwidth is adequately narrow, the crosstalk may behave as virtually static coupling that changes very gradually with time and heavily depends on the wavelength. To cope with a static crosstalk much higher than its statistical mean, a margin of several decibels from the mean crosstalk may be necessary for suppressing Q-penalty in the case of adequately narrow bandwidth.