1-3hit |
Emad HAMIDI Mahmoud MOHAMMAD-TAHERI
A simple method for the gain improvement of matrix distributed amplifiers is presented. The method is based on modifying the central transmission line of the matrix amplifier without any changes in the input and output transmission lines. In the new method the termination impedances in the central transmission line are modified and the transmission line is replaced by an impedance matching circuitry. It has been shown that the new method can significantly improve the gain while preserving the input and output return losses of the amplifier.
Emad HAMIDI Mahmoud MOHAMMAD-TAHERI
A new method is presented in order to improve the transient response of distributed amplifiers. The method is based on fitting the parameters of the distributed amplifier to those of a predesigned lowpass filter. Analytical expressions are derived to show the performance of the new structure. Three distributed amplifiers are designed based on the proposed method and it has been shown that the new method can significantly improve the transient response of the amplifier. It has been shown that the new method can improve the other characteristics of the distributed amplifier too. The effects of parasitic and lossy elements has also been considered and it has been shown that such effects doesn't violate the generality of the proposed theory.
Emad HAMIDI Mahmoud MOHAMMAD-TAHERI
A comparison is made between the performance of the MMIC matrix and distributed amplifiers. It has been shown that based on the analytical formulations, in most typical cases a cascaded dual stage distributed amplifier has more gain than that of a two-tier matrix amplifier with the same number of transistors; however the difference is not significant. Results of the analytical approach are then compared with the simulated and the measured results and a good agreement between the results has been obtained. Then other scattering parameters of the matrix and distributed amplifiers have been compared.