The search functionality is under construction.

Author Search Result

[Author] Fanxin ZENG(33hit)

1-20hit(33hit)

  • Comments on “New Constructions of Perfect 8-QAM+/8-QAM Sequences”

    Fanxin ZENG  

     
    LETTER-Information Theory

      Vol:
    E98-A No:6
      Page(s):
    1334-1338

    In Xu, Chen, and Liu's letter, two constructions producing perfect 8-QAM+/8-QAM sequences were given. We show that their constructions are equivalent to Zeng, et al.'s constructions under unit constant transform. Since the autocorrelation of a perfect sequence under unit constant transform is invariable, Xu, et al.'s constructions are the special case of Zeng, et al.'s constructions.

  • Several Types of Sequences with Optimal Autocorrelation Properties

    Fanxin ZENG  Xiaoping ZENG  Xiangyong ZENG  Zhenyu ZHANG  Guixin XUAN  

     
    LETTER-Information Theory

      Vol:
    E96-A No:1
      Page(s):
    367-372

    This letter presents a framework, including two constructions, for yielding several types of sequences with optimal autocorrelation properties. Only by simply choosing proper coefficients in constructions and optimal known sequences, two constructions transform the chosen sequences into optimally required ones with two or four times periods as long as the original sequences', respectively. These two constructions result in binary and quaternary sequences with optimal autocorrelation values (OAVs), perfect QPSK+ sequences, and multilevel perfect sequences, depending on choices of the known sequences employed. In addition, Construction 2 is a generalization of Construction B in [5] so that the number of distinct sequences from the former is larger than the one from the latter.

  • New Perfect Polyphase Sequences and Mutually Orthogonal ZCZ Polyphase Sequence Sets

    Fanxin ZENG  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E92-A No:7
      Page(s):
    1731-1736

    In communication systems, ZCZ sequences and perfect sequences play important roles in removing multiple-access interference (MAI) and synchronization, respectively. Based on an uncorrelated polyphase base sequence set, a novel construction method, which can produce mutually orthogonal (MO) ZCZ polyphase sequence (PS) sets and perfect PSs, is presented. The obtained ZCZ PSs of each set are of ideal periodic cross-correlation functions (PCCFs), in other words, the PCCFs between such two different sequences vanishes, and the sequences between different sets are orthogonal. On the other hand, the proposed perfect PSs include Frank perfect PSs as a special case and the family size of the former is quite larger than that of the latter.

  • A Brief Proof of General QAM Golay Complementary Sequences in Cases I-III Constructions

    Fanxin ZENG  Zhenyu ZHANG  

     
    LETTER-Information Theory

      Vol:
    E98-A No:10
      Page(s):
    2203-2206

    By investigating the properties that the offsets should satisfy, this letter presents a brief proof of general QAM Golay complementary sequences (GCSs) in Cases I-III constructions. Our aim is to provide a brief, clear, and intelligible derivation so that it is easy for the reader to understand the known Cases I-III constructions of general QAM GCSs.

  • Optimal Balanced Almost 8-QAM Sequences with Three-Level Autocorrelation

    Fanxin ZENG  Xiping HE  Guixin XUAN  Zhenyu ZHANG  Yanni PENG  Linjie QIAN  Li YAN  

     
    LETTER-Sequences

      Vol:
    E102-A No:12
      Page(s):
    1691-1696

    Based on the number of cyclotomy of order eight, a class of balanced almost 8-QAM sequences with odd prime periods is presented. The resultant sequences have low two-level nontrivial autocorrelation values, and their distribution is determined. Furthermore, the smallest possible absolute sidelobes (SPASs) of autocorrelation functions of balanced almost 8-QAM sequences are derived. Compared with the obtained SPASs, some of the proposed sequences is optimal or suboptimal.

  • Two-Dimensional Compressed Sensing Using Two-Dimensional Random Permutation for Image Encryption-then-Compression Applications

    Yuqiang CAO  Weiguo GONG  Bo ZHANG  Fanxin ZENG  Sen BAI  

     
    LETTER-Cryptography and Information Security

      Vol:
    E101-A No:2
      Page(s):
    526-530

    Block compressed sensing with random permutation (BCS-RP) has been shown to be very effective for image Encryption-then-Compression (ETC) applications. However, in the BCS-RP scheme, the statistical information of the blocks is disclosed, because the encryption is conducted within each small block of the image. To solve this problem, a two-dimension compressed sensing (2DCS) with 2D random permutation (2DRP) strategy for image ETC applications is proposed in this letter, where the 2DRP strategy is used for encrypting the image and the 2DCS scheme is used for compressing the encrypted image. Compared with the BCS-RP scheme, the proposed approach has two benefits. Firstly, it offers better security. Secondly, it obtains a significant gain of peak signal-to-noise ratio (PSNR) of the reconstructed-images.

  • 16-QAM Sequences with Zero Correlation Zone from the Known Binary ZCZ Sequences and Gray Mapping

    Fanxin ZENG  Xiaoping ZENG  Zhenyu ZHANG  Guixin XUAN  

     
    LETTER-Information Theory

      Vol:
    E94-A No:11
      Page(s):
    2466-2471

    The approximately synchronized code-division multiple-access (CDMA) communication system, using the QAM sequences with zero correlation zone (ZCZ) as its spreading sequences, not only can remove the multiple access interference (MAI) and multi-path interference (MPI) synchronously, but also has a higher transmission data rate than the one using traditional ZCZ sequences with the same sequence length. Based on Gray mapping and the known binary ZCZ sequences, in this letter, six families of 16-QAM sequences with ZCZ are presented. When the binary ZCZ sequences employed by this letter arrive at the theoretical bound on the binary ZCZ sequences, and their family size is a multiple of 4 or 2, two of the resultant six 16-QAM sequence sets satisfy the bound referred to above as well.

  • Construction of Multi-Dimensional Periodic Complementary Array Sets

    Fanxin ZENG  Zhenyu ZHANG  

     
    LETTER-Information Theory

      Vol:
    E93-A No:7
      Page(s):
    1392-1395

    Multi-dimensional (MD) periodic complementary array sets (CASs) with impulse-like MD periodic autocorrelation function are naturally generalized to (one dimensional) periodic complementary sequence sets, and such array sets are widely applied to communication, radar, sonar, coded aperture imaging, and so forth. In this letter, based on multi-dimensional perfect arrays (MD PAs), a method for constructing MD periodic CASs is presented, which is carried out by sampling MD PAs. It is particularly worth mentioning that the numbers and sizes of sub-arrays in the proposed MD periodic CASs can be freely changed within the range of possibilities. In particular, for arbitrarily given positive integers M and L, two-dimensional periodic polyphase CASs with the number M2 and size L L of sub-arrays can be produced by the proposed method. And analogously, pseudo-random MD periodic CASs can be given when pseudo-random MD arrays are sampled. Finally, the proposed method's validity is made sure by a given example.

  • A Class of Complementary Sequences with Multi-Width Zero Cross-Correlation Zone

    Zhenyu ZHANG  Fanxin ZENG  Guixin XUAN  

     
    PAPER-Coding Theory

      Vol:
    E93-A No:8
      Page(s):
    1508-1517

    A novel construction of complementary sequences with multi-width zero cross-correlation zone (ZCCZ) is presented based on the interleaving iteration of a basic kernel set. The presented multi-width ZCCZ complementary (MWZC) sequences can be divided into multiple sequence groups, the correlation functions of which possess one-width intragroup ZCCZ and multi-width intergroup ZCCZ. When an arbitrary orthogonal sequence set with set size equal to sequence length is used as a basic kernel set, the constructed MWZC sequence set and the combination sets of specific subsets with each subset including several groups can be optimal with respect to the theoretical bound on set size. In addition, the MWZC sequence set includes complementary sequence sets with one-width or two-width ZCCZ as special subsets, and allows a more flexible choice of sequence parameters.

  • A Family of New 16-QAM Golay Complementary Sequences without Higher PEP Upper Bounds

    Fanxin ZENG  Xiping HE  Guixin XUAN  Zhenyu ZHANG  Yanni PENG  Li YAN  

     
    LETTER-Information Theory

      Vol:
    E103-A No:2
      Page(s):
    547-552

    In an OFDM communication system using quadrature amplitude modulation (QAM) signals, peak envelope powers (PEPs) of the transmitted signals can be well controlled by using QAM Golay complementary sequence pairs (CSPs). In this letter, by making use of a new construction, a family of new 16-QAM Golay CSPs of length N=2m (integer m≥2) with binary inputs is presented, and all the resultant pairs have the PEP upper bound 2N. However, in the existing such pairs from other references their PEP upper bounds can arrive at 3.6N when the worst case happens. In this sense, novel pairs are good candidates for OFDM applications.

  • Several Families of Sequences with Low Correlation and Large Linear Span

    Fanxin ZENG  Zhenyu ZHANG  

     
    LETTER-Information Theory

      Vol:
    E91-A No:8
      Page(s):
    2263-2268

    In DS-CDMA systems and DS-UWB radios, low correlation of spreading sequences can greatly help to minimize multiple access interference (MAI) and large linear span of spreading sequences can reduce their predictability. In this letter, new sequence sets with low correlation and large linear span are proposed. Based on the construction Tr1m[Trmn(αbt+γiαdt)]r for generating p-ary sequences of period pn-1, where n=2m, d=upm v, b=u v, γi GF(pn), and p is an arbitrary prime number, several methods to choose the parameter d are provided. The obtained sequences with family size pn are of four-valued, five-valued, six-valued or seven-valued correlation and the maximum nontrivial correlation value is (u+v-1)pm-1. The simulation by a computer shows that the linear span of the new sequences is larger than that of the sequences with Niho-type and Welch-type decimations, and similar to that of [10].

  • QAM Periodic Complementary Sequence Sets

    Fanxin ZENG  Zhenyu ZHANG  

     
    LETTER-Information Theory

      Vol:
    E98-A No:6
      Page(s):
    1329-1333

    The mappings from independent binary variables to quadrature amplitude modulation (QAM) symbols are developed. Based the proposed mappings and the existing binary mutually uncorrelated complementary sequence sets (MUCSSs), a construction producing QAM periodic complementary sequence sets (PCSSs) is presented. The resultant QAM PCSSs have the same numbers and periods of sub-sequences as the binary MUCSSs employed, and the family size of new sequence sets is increased with exponent of periods of sub-sequences. The proposed QAM PCSSs can be applied to CDMA or OFDM communication systems so as to suppress multiple access interference (MAI) or to reduce peak-to-mean envelope power ratio (PMEPR), respectively.

  • 16-QAM Golay, Periodic and Z- Complementary Sequence Sets

    Fanxin ZENG  Xiaoping ZENG  Zhenyu ZHANG  Guixin XUAN  

     
    LETTER-Information Theory

      Vol:
    E95-A No:11
      Page(s):
    2084-2089

    In contemporary communications, Golay, periodic and Z- complementary sequence sets play a very important role, since such sequence sets possess impulse-like or zero correlation zone (ZCZ) autocorrelation. On the other hand, the advantages of the signals over the quadrature amplitude modulation (QAM) constellation are more and more prominent. Hence, the design of such sequence sets over the QAM constellation has turned into one of the all-important issues in communications. Therefore, the construction methods of such sequence sets over the 16-QAM constellation are investigated, in this letter, and our goals are arrived at by the known quaternary Golay, periodic and Z- complementary sequence sets. Finally, many examples illuminate the validity of the proposed methods.

  • Lower Bounds on Two-Dimensional Generalized Orthogonal Sequences

    Fanxin ZENG  Zhenyu ZHANG  Lijia GE  

     
    LETTER-Information Theory

      Vol:
    E89-A No:4
      Page(s):
    1140-1144

    For various applications in image, communications and signal processing, two-dimensional (2-D) generalized orthogonal (GO) sequences, that is, 2-D sequences with zero correlation zone (ZCZ) and 2-D complementary orthogonal (CO) sequences with ZCZ, are widely investigated. New lower bounds for 2-D GO sequences, based on matrix theory on rank, are derived and presented, some examples that attain these lower bounds are given. As a direct application to our results, upper bound on family size of 2-D mutually complementary orthogonal (MCO) codes defined by Luke [9] is proposed.

  • Properties of m-Sequence and Construction of Constant Weight Codes

    Fanxin ZENG  

     
    LETTER-Coding Theory

      Vol:
    E88-A No:12
      Page(s):
    3675-3676

    In the letter, properties of m-sequence are derived, based on these properties, a family of binary nonlinear constant weight codes is presented, these binary nonlinear constant weight codes can apply to automatic repeat request (ARQ) communication system, as detecting-error codes.

  • Perfect Arrays over the 8-QAM+ Constellation

    Fanxin ZENG  Linjie QIAN  Zhenyu ZHANG  

     
    LETTER-Information Theory

      Vol:
    E98-A No:4
      Page(s):
    1038-1043

    Perfect arrays are widely applied to high-dimensional communications, time-frequency-coding, spatial correlation or map matching, built-in tests of VLSI-circuits, radar, and so on. The letter investigates perfect arrays over the 8-QAM+ constellation, and two constructions for yielding such arrays are presented. Furthermore, the family size of the proposed arrays is determined as well.

  • Expansion of Linear Span and Family Size to Several Families of Known Sequences

    Fanxin ZENG  Zhenyu ZHANG  

     
    LETTER-Information Theory

      Vol:
    E93-A No:10
      Page(s):
    1840-1844

    In a direct-sequence spread spectrum communication system, its multiple access interference, security and user number are mainly decided by correlation, linear span and family size of spreading sequences employed by such a system, respectively. In this letter, based on several families of the known sequences, a method for improving their linear span and family sizes is presented. It is worthy of mentioning that although the number of the proposed sequences with linear span not less than that of the known sequences is enormously increased, the former's correlation distribution is the same as the latter's one. In addition, the proposed sequences include No sequences and the known sequences mentioned above as special cases.

  • A Unified Construction for Yielding Quaternary Sequences with Optimal Periodic Autocorrelation

    Fanxin ZENG  Xiaoping ZENG  Zhenyu ZHANG  Guixin XUAN  

     
    PAPER-Information Theory

      Vol:
    E96-A No:7
      Page(s):
    1593-1601

    A unified construction for transforming binary sequences of balance or unbalance into quaternary sequences is presented. On the one hand, when optimal and balanced binary sequences with even period are employed, our construction is exactly the same Jang, et al.'s and Chung, et al.'s ones, which result in balanced quaternary sequences with optimal autocorrelation magnitude. On the other hand, when ideal and balanced binary sequences with odd period N are made use of, our construction produces new balanced quaternary sequences with optimal autocorrelation value (OAV), in which there are N distinct sequences in terms of cyclic shift equivalence, and includes Tang, et al.'s and Jang, et al.'s ones as special cases. In addition, when binary sequences without period 2n-1 or balance are employed, the transformation of Jang, et al.'s method is invalid, however, the proposed construction works very good. As a consequence, this unified construction allows us to construct optimal and balanced quaternary sequences from ideal/optimal balanced binary sequences with arbitrary period.

  • A Note on 8-QAM+ Sequences

    Fanxin ZENG  Xiaoping ZENG  Zhenyu ZHANG  Guixin XUAN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:3
      Page(s):
    888-893

    This letter presents three methods for producing 8-QAM+ sequences. The first method transforms a ternary complementary sequence set (CSS) with even number of sub-sequences into an 8-QAM+ periodic CSS with both of the period and the number of sub-sequences unaltered. The second method results in an 8-QAM+ aperiodic CSS with confining neither the period nor the number of sub-sequences. The third method produces 8-QAM+ periodic sequences having ideal autocorrelation property on the real part of the autocorrelation function. The proposed sequences can be potentially applied to suppression of multiple access interference or synchronization in a communication system.

  • Optimal Permutation Based Block Compressed Sensing for Image Compression Applications

    Yuqiang CAO  Weiguo GONG  Bo ZHANG  Fanxin ZENG  Sen BAI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2017/10/20
      Vol:
    E101-D No:1
      Page(s):
    215-224

    Block compressed sensing (CS) with optimal permutation is a promising method to improve sampling efficiency in CS-based image compression. However, the existing optimal permutation scheme brings a large amount of extra data to encode the permutation information because it needs to know the permutation information to accomplish signal reconstruction. When the extra data is taken into consideration, the improvement in sampling efficiency of this method is limited. In order to solve this problem, a new optimal permutation strategy for block CS (BCS) is proposed. Based on the proposed permutation strategy, an improved optimal permutation based BCS method called BCS-NOP (BCS with new optimal permutation) is proposed in this paper. Simulation results show that the proposed approach reduces the amount of extra data to encode the permutation information significantly and thereby improves the sampling efficiency compared with the existing optimal permutation based BCS approach.

1-20hit(33hit)