1-1hit |
Farley Soares OLIVEIRA Hidefumi HIRAISHI Hiroshi IMAI
Revisiting the Sekine-Imai-Tani top-down algorithm to compute the BDD of all spanning trees and the Tutte polynomial of a given graph, we explicitly analyze the Fixed-Parameter Tractable (FPT) time complexity with respect to its (proper) pathwidth, pw (ppw), and obtain a bound of O*(Bellmin{pw}+1,ppw}), where Belln denotes the n-th Bell number, defined as the number of partitions of a set of n elements. We further investigate the case of complete graphs in terms of Bell numbers and related combinatorics, obtaining a time complexity bound of Belln-O(n/log n).