1-7hit |
A coordinate plane representation of the resource requirements of digital modulation methods is presented, and an overall resource efficiency measure is proposed. This measure can be used for the comparison of digital modulation methods and the evaluation of an emerging modulation technique. Several typical digital modulation methods are compared based on this measure to show its validity.
Weiwei XIA Zhuorui LAN Lianfeng SHEN
In this paper, we propose a hierarchical Stackelberg game based resource allocation algorithm (HGRAA) to jointly allocate the wireless and computational resources of a mobile edge computing (MEC) system. The proposed HGRAA is composed of two levels: the lower-level evolutionary game (LEG) minimizes the cost of mobile terminals (MTs), and the upper-level exact potential game (UEPG) maximizes the utility of MEC servers. At the lower-level, the MTs are divided into delay-sensitive MTs (DSMTs) and non-delay-sensitive MTs (NDSMTs) according to their different quality of service (QoS) requirements. The competition among DSMTs and NDSMTs in different service areas to share the limited available wireless and computational resources is formulated as a dynamic evolutionary game. The dynamic replicator is applied to obtain the evolutionary equilibrium so as to minimize the costs imposed on MTs. At the upper level, the exact potential game is formulated to solve the resource sharing problem among MEC servers and the resource sharing problem is transferred to nonlinear complementarity. The existence of Nash equilibrium (NE) is proved and is obtained through the Karush-Kuhn-Tucker (KKT) condition. Simulations illustrate that substantial performance improvements such as average utility and the resource utilization of MEC servers can be achieved by applying the proposed HGRAA. Moreover, the cost of MTs is significantly lower than other existing algorithms with the increasing size of input data, and the QoS requirements of different kinds of MTs are well guaranteed in terms of average delay and transmission data rate.
Xujie LI Weiwei XIA Lianfeng SHEN
This letter presents an analytical study of the reverse link Erlang capacity of 3G/Ad Hoc Integrated networks. In the considered integrated network, 3G networks and Ad Hoc networks operate over the same frequency band and hence cause interference to each other. The reverse link Erlang capacity is analyzed and discussed in two cases: Ad Hoc networks use and do not use power control.
Xujie LI Weiwei XIA Qiong YANG Lianfeng SHEN
This letter presents an analytical study of outage probability of a 3G/Ad Hoc cooperative network. The considered cooperative network can improve the signal quality so as to decrease the outage probability. Meanwhile, it imposes additional interference on other ongoing users. But on the whole, our analytical study and simulation results show that the cooperative network can still effectively overcome outage event and decrease the average outage probability.
Jinyang SONG Feng SHEN Xiaobo CHEN Di ZHAO
In this letter, robust sparse signal recovery is considered in the presence of heavy-tailed impulsive noise. Two Bayesian approaches are developed where a Bayesian framework is constructed by utilizing the Laplace distribution to model the noise. By rewriting the noise-fitting term as a reweighted quadratic function which is optimized in the sparse signal space, the Type I Maximum A Posteriori (MAP) approach is proposed. Next, by exploiting the hierarchical structure of the sparse prior and the likelihood function, we develop the Type II Evidence Maximization approach optimized in the hyperparameter space. The numerical results verify the effectiveness of the proposed methods in the presence of impulsive noise.
We propose a call admission control scheme in cellular and wireless local area networks (WLANs) integration: integrated service-based admission control with load-balancing capability (ISACL). The novel aspects of the ISACL scheme include that load transfer in the cellular/WLAN overlapping areas is allowed for the admission of originating data calls from the area with cellular access only and vertical handoff requests to the cellular network. Packet-level quality of service (QoS) constraints in the WLANs and other-cell interference in the code division multiple access (CDMA) cellular network are taken into account to derive the WLANs and cellular capacity. We model the integrated networks using a multi-dimensional Markov chain and the important performance measures are derived for effective optimization of the admission parameters. The analytical model is validated by a computer simulation. The variation of admission parameters with traffic load and the dependence of resource utilization on admission parameters are investigated. It is shown that optimal balancing of the traffic load between the cellular network and WLANs results in the maximum resource utilization. Numerical results demonstrate that substantial performance improvements can be achieved by applying the proposed ISACL scheme.
We propose two vertical handoff schemes for cellular network and wireless local area network (WLAN) integration: integrated service-based handoff (ISH) and integrated service-based handoff with queue capabilities (ISHQ). Compared with existing handoff schemes in integrated cellular/WLAN networks, the proposed schemes consider a more comprehensive set of system characteristics such as different features of voice and data services, dynamic information about the admitted calls, user mobility and vertical handoffs in two directions. The code division multiple access (CDMA) cellular network and IEEE 802.11e WLAN are taken into account in the proposed schemes. We model the integrated networks by using multi-dimensional Markov chains and the major performance measures are derived for voice and data services. The important system parameters such as thresholds to prioritize handoff voice calls and queue sizes are optimized. Numerical results demonstrate that the proposed ISHQ scheme can maximize the utilization of overall bandwidth resources with the best quality of service (QoS) provisioning for voice and data services.