The search functionality is under construction.

Author Search Result

[Author] Gaoxing CHEN(2hit)

1-2hit
  • Hardware Oriented Enhanced Category Determination Based on CTU Boundary Deblocking Strength Prediction for SAO in HEVC Encoder

    Gaoxing CHEN  Zhenyu PEI  Zhenyu LIU  Takeshi IKENAGA  

     
    PAPER-Digital Signal Processing

      Vol:
    E99-A No:4
      Page(s):
    788-797

    High efficiency video coding (HEVC) is a video compression standard that outperforms the predecessor H.264/AVC by doubling the compression efficiency. To enhance the coding accuracy, HEVC adopts sample adaptive offset (SAO), which reduces the distortion of reconstructed pixels using classification based non-linear filtering. In the traditional coding tree unit (CTU) grain based VLSI encoder implementation, during the pixel classification stage, SAO cannot use the raw samples in the boundary of the current CTU because these pixels have not been processed by deblocking filter (DF). This paper proposes a hardware-oriented category determination algorithm based on estimating the deblocking strengths on CTU boundaries and selectively adopting the promising samples in these areas during SAO classification. Compared with HEVC test mode (HM11.0), experimental results indicate that the proposed method achieves an average 0.13%, 0.14%, and 0.12% BD-bitrate reduction (equivalent to 0.0055dB, 0.0058dB, and 0.0097dB increases in PSNR) in CTU sizes of 64 × 64, 32 × 32, and 16 × 16, respectively.

  • Fast Mode and Depth Decision for HEVC Intra Prediction Based on Edge Detection and Partition Reconfiguration

    Gaoxing CHEN  Lei SUN  Zhenyu LIU  Takeshi IKENAGA  

     
    PAPER

      Vol:
    E97-A No:11
      Page(s):
    2130-2138

    High efficiency video coding (HEVC) is a video compression standard that outperforms the predecessor H.264/AVC by doubling the compression efficiency. To enhance the intra prediction accuracy, 35 intra prediction modes were used in the prediction units (PUs), with partition sizes ranging from 4 × 4 to 64 × 64 in HEVC. However, the manifold prediction modes dramatically increase the encoding complexity. This paper proposes a fast mode- and depth-decision algorithm based on edge detection and reconfiguration to alleviate the large computational complexity in intra prediction with trivial degradation in accuracy. For mode decision, we propose pixel gradient statistics (PGS) and mode refinement (MR). PGS uses pixel gradient information to assist in selecting the prediction mode after rough mode decision (RMD). MR uses the neighboring mode information to select the best PU mode (BPM). For depth decision, we propose a partition reconfiguration algorithm to replace the original partitioning order with a more reasonable structure, by using the smoothness of the coding unit as a criterion in deciding the prediction depth. Smoothness detection is based on the PGS result. Experiment results show that the proposed method saves about 41.50% of the original processing time with little degradation (BD bitrate increased by 0.66% and BDPSNR decreased by 0.060dB) in the coding gain.