The search functionality is under construction.

Author Search Result

[Author] Guangrong YUE(3hit)

1-3hit
  • Ultra Wideband Time Hopping Impulse Radio Signal Impact on Performance of TD-SCDMA

    Guangrong YUE  Hongyu CHEN  Shaoqian LI  

     
    PAPER-Co-existance

      Vol:
    E88-A No:9
      Page(s):
    2373-2380

    This paper studies power spectrum density (PSD) of multi-user aggregate time hopping (TH) ultra wideband (UWB) signal with asynchronous transmission and synchronous transmission. TH codes under consideration are deterministic periodic code and random integer code. Based on the PSD, the in-band interference power for TD SCDMA is investigated as function of UWB system parameters. Two UWB modulations, TH pulse position modulation (PPM) and TH BPSK, are considered for calculating the in-band interference power. The numerical results indicate that asynchronous transmission is an effective way to decrease the peak in-band interference caused by multi-user aggregate TH-PPM UWB signal. Although increasing the maximum of time hopping code elements can smooth the PSD of TH UWB signal, it is not a good idea for reducing the peak in-band interference for TD SCDMA. For the random integer TH code, while only TH UWB continuous spectral exists in TD SCDMA band or multi-user signals of TH UWB are transmitted asynchronously, the in-band interference for TD SCDMA is in proportion to the number of the UWB users. For TD SCDMA in which band discrete spectral line exists the in-band interference caused by TH UWB with synchronous transmission is in proportion to the square of the number of the UWB users.

  • An Iteration Based Beamforming Method for Planar Phased Array in Millimeter-Wave Communication

    Junlin TANG  Guangrong YUE  Lei CHEN  Shaoqian LI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E100-C No:4
      Page(s):
    399-406

    Nowadays, with the extensive use of smart devices, the amount of mobile data is experiencing an exponential growth. As a result, accommodating the large amount of traffic is important for the future 5G mobile communication. Millimeter-wave band, which has a lot of spectrum resources to meet the demand brought by the growth of mobile data, is becoming an important part of 5G technology. In order to mitigate the high path loss brought by the high frequency band, beamforming is often used to enhance the gain of a link. In this paper, we propose an iteration-based beamforming method for planar phased array. When compared to a linear array, a planar phased array points a smaller area which ensures a better link performance. We deduce that different paths of millimeter-wave channel are approximately orthogonal when the antenna array is large, which forms the basis of our iterative approach. We also discuss the development of the important millimeter-wave device-phase shifter, and its effect on the performance of the proposed beamforming method. From the simulation, we prove that our method has a performance close to the singular vector decomposition (SVD) method and is superior to the method in IEEE802.15.3c. Moreover, the channel capacity of the proposed method is at most 0.41bps/Hz less than the SVD method. We also show that the convergence of the proposed method could be achieved within 4 iterations and a 3-bit phase shifter is enough for practical implementation.

  • Effect of Phase Shifter Quantization Error on the Performance of Millimeter Wave Beam Steering

    Junlin TANG  Kaida XU  Yuan ZENG  Guangrong YUE  Shaoqian LI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/03/23
      Vol:
    E100-B No:10
      Page(s):
    1884-1890

    Beamforming technology is an effective method to build a robust link. The commonly used digital beamforming is an expensive and power consuming approach to realizing millimeter-wave transmission. This makes radio frequency(RF) beamforming, which has low cost and low power consumption due to its use of phase shifters the more feasible approach to creating stable links in the millimeter-wave band. Unfortunately, the performance of RF processing is degraded by the limited precision of digital phase shifters. In this paper, we analyze the gain loss caused by the limited precision of phase shifter in millimeter wave single stream beam steering. We deduce a theoretical relationship between the array gain loss and variance of phase error. The theoretical results are validated by the Monte Carlo simulations, which indicate that gain loss could be reduced by the increased precision of phase shifter. In practical applications, 4-bit phase shifters provide sufficient accuracy for single stream beam steering.