1-2hit |
Haitong YANG Guangyou ZHOU Tingting HE Maoxi LI
In this paper, we study domain adaptation of semantic role classification. Most systems utilize the supervised method for semantic role classification. But, these methods often suffer severe performance drops on out-of-domain test data. The reason for the performance drops is that there are giant feature differences between source and target domain. This paper proposes a framework called Adversarial Domain Adaption Network (ADAN) to relieve domain adaption of semantic role classification. The idea behind our method is that the proposed framework can derive domain-invariant features via adversarial learning and narrow down the gap between source and target feature space. To evaluate our method, we conduct experiments on English portion in the CoNLL 2009 shared task. Experimental results show that our method can largely reduce the performance drop on out-of-domain test data.
Haitong YANG Guangyou ZHOU Tingting HE Maoxi LI
The current approaches to semantic role classification usually first define a representation vector for a candidate role and feed the vector into a deep neural network to perform classification. The representation vector contains some lexicalization features like word embeddings, lemmar embeddings. From linguistics, the semantic role frame of a sentence is a joint structure with strong dependencies between arguments which is not considered in current deep SRL systems. Therefore, this paper proposes a global deep reranking model to exploit these strong dependencies. The evaluation experiments on the CoNLL 2009 shared tasks show that our system can outperforms a strong local system significantly that does not consider role dependency relations.