The search functionality is under construction.

Author Search Result

[Author] Guobing QIAN(3hit)

1-3hit
  • A Novel Method for Adaptive Beamforming under the Strong Interference Condition

    Zongli RUAN  Hongshu LIAO  Guobing QIAN  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2021/08/02
      Vol:
    E105-A No:2
      Page(s):
    109-113

    In this letter, firstly, a novel adaptive beamformer using independent component analysis (ICA) algorithm is proposed. By this algorithm, the ambiguity of amplitude and phase resulted from blind source separation is removed utilizing the special structure of array manifolds matrix. However, there might exist great calibration error when the powers of interferences are far larger than that of desired signal at many applications such as sonar, radio astronomy, biomedical engineering and earthquake detection. As a result, this will lead to a significant reduction in separation performance. Then, a new method based on the combination of ICA and primary component analysis (PCA) is proposed to recover the desired signal's amplitude under strong interference. Finally, computer simulation is carried out to indicate the effectiveness of our methods. The simulation results show that the proposed methods can obtain higher SNR and more accurate power estimation of desired signal than diagonal loading sample matrix inversion (LSMI) and worst-case performance optimization (WCPO) method.

  • Complex Noisy Independent Component Analysis by Negentropy Maximization

    Guobing QIAN  Liping LI  Hongshu LIAO  

     
    LETTER-Noise and Vibration

      Vol:
    E97-A No:12
      Page(s):
    2641-2644

    The maximization of non-Gaussianity is an effective approach to achieve the complex independent component analysis (ICA) problem. However, the traditional complex maximization of non-Gaussianity (CMN) algorithm does not consider the influence of noise. In this letter, a modification of the fixed-point algorithm is proposed for more practical occasions of the complex noisy ICA model. Simulations show that the proposed method demonstrates significantly improved performance over the traditional CMN algorithm in the noisy ICA model when the sample size is sufficient.

  • Fully-Complex Infomax for Blind Separation of Delayed Sources

    Zongli RUAN  Ping WEI  Guobing QIAN  Hongshu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:5
      Page(s):
    973-977

    The information maximization (Infomax) based on information entropy theory is a class of methods that can be used to blindly separate the sources. Torkkola applied the Infomax criterion to blindly separate the mixtures where the sources have been delayed with respect to each other. Compared to the frequency domain methods, this time domain method has simple adaptation rules and can be easily implemented. However, Torkkola's method works only in the real valued field. In this letter, the Infomax for blind separation of the delayed sources is extended to the complex case for processing of complex valued signals. Firstly, based on the gradient ascent the adaptation rules for the parameters of the unmixing network are derived and the steps of algorithm are given. Then, a measurement matrix is constructed to evaluate the separation performance. The results of computer experiment support the extended algorithm.