1-2hit |
Guodong SUN Kai LIN Junhao WANG Yang ZHANG
This paper proposes an enhanced affinity graph (EA-graph) for image segmentation. Firstly, the original image is over-segmented to obtain several sets of superpixels with different scales, and the color and texture features of the superpixels are extracted. Then, the similarity relationship between neighborhood superpixels is used to construct the local affinity graph. Meanwhile, the global affinity graph is obtained by sparse reconstruction among all superpixels. The local affinity graph and global affinity graph are superimposed to obtain an enhanced affinity graph for eliminating the influences of noise and isolated regions in the image. Finally, a bipartite graph is introduced to express the affiliation between pixels and superpixels, and segmentation is performed using a spectral clustering algorithm. Experimental results on the Berkeley segmentation database demonstrate that our method achieves significantly better performance compared to state-of-the-art algorithms.
Guodong SUN Zhen ZHOU Yuan GAO Yun XU Liang XU Song LIN
In this paper we design a fast fabric defect detection framework (Fast-DDF) based on gray histogram back-projection, which adopts end to end multi-convoluted network model to realize defect classification. First, the back-projection image is established through the gray histogram on fabric image, and the closing operation and adaptive threshold segmentation method are performed to screen the impurity information and extract the defect regions. Then, the defect images segmented by the Fast-DDF are marked and normalized into the multi-layer convolutional neural network for training. Finally, in order to solve the problem of difficult adjustment of network model parameters and long training time, some strategies such as batch normalization of samples and network fine tuning are proposed. The experimental results on the TILDA database show that our method can deal with various defect types of textile fabrics. The average detection accuracy with a higher rate of 96.12% in the database of five different defects, and the single image detection speed only needs 0.72s.