1-2hit |
Temporal Self-Similarity Matrix (SSM) based action recognition is one of the important approaches of single-person oriented action analysis in computer vision. In this study, we propose a new kind of SSM and a fast computation method. The computation method does not require time-consuming pre-processing to find bounding boxes of the human body, instead it processes difference images to obtain action patterns which can be done very quickly. The proposed SSM is experimentally confirmed to have high power/capacity to achieve a better classification performance than four typical kinds of SSMs.
Guoliang LU Mineichi KUDO Jun TOYAMA
Vision based human action recognition has been an active research field in recent years. Exemplar matching is an important and popular methodology in this field, however, most previous works perform exemplar matching on the whole input video clip for recognition. Such a strategy is computationally expensive and limits its practical usage. In this paper, we present a martingale framework for selection of characteristic frames from an input video clip without requiring any prior knowledge. Action recognition is operated on these selected characteristic frames. Experiments on 10 studied actions from WEIZMANN dataset demonstrate a significant improvement in computational efficiency (54% reduction) while achieving the same recognition precision.