The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Hai XIAO(3hit)

1-3hit
  • A K-band Push-Push Oscillator Using λg/2 Microstrip Resonator

    Hai XIAO  Takayuki TANAKA  Masayoshi AIKAWA  

     
    PAPER

      Vol:
    E86-C No:8
      Page(s):
    1438-1443

    In this paper, a novel circuit structure of Push-Push oscillator using λg/2 microstrip resonator is proposed, in which a common resonator plays two functions of frequency determining and power combining. This type of Push-Push oscillator is named "Dipole Resonator Push-Push oscillator" here, where an additional power combiner circuit required in conventional Push-Push oscillators can be eliminated. The Push-Push oscillator adopting this design concept has the advantages of the easy circuit design, the simple circuit structure and the miniaturization of the circuit size. As a most simple example of this design concept, a K-band Push-Push oscillator using a λg/2 microstrip resonator is designed and achieved. The high output power of +8.4 dBm at the frequency of 21.68 GHz (2f0) is obtained with the phase noise of -100.5 dBc/Hz at the offset frequency of 1 MHz. Besides, a high suppression of the undesired fundamental frequency signal (f0) of -26 dBc is realized.

  • A 20 GHz Push-Push Oscillator Using Ring Resonator

    Hai XIAO  Takayuki TANAKA  Masayoshi AIKAWA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E87-C No:12
      Page(s):
    2143-2149

    In this paper, a 20 GHz push-push oscillator using a ring resonator is proposed. The push-push oscillator adopts "dipole resonator push-push oscillator" circuit scheme, in which a common resonator plays two roles of frequency determining and power combining, and then the additional power combiner circuit required in conventional push-push oscillators can be eliminated. This kind of push-push oscillators has the advantages of the easy circuit design, the simple circuit configuation and the miniaturization of the circuit size. The output power is +4.5 dBm at the frequency of 20.34 GHz (2f0) with the phase noise of -98 dBc/Hz at the offset frequency of 1 MHz, and a high suppression of the undesired the fundamental frequency signal (f0) of -33 dBc is obtained.

  • Basic Behavior of Quadruple-Push Oscillator Using Ring Resonator

    Hai XIAO  Takayuki TANAKA  Masayoshi AIKAWA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:7
      Page(s):
    1502-1508

    A novel millimeter wave quadruple-push oscillator is presented in this paper. The quadruple-push oscillator consists of four identical sub-circuits and a ring resonator that is used as a common resonator. It is well known that there are two orthogonal resonant modes on a one-wavelength ring resonator. According to this resonant characteristic, two orthogonal push-push oscillations can be set up in the quadruple-push oscillator, and there is a phase difference of 90among four sub-circuits due to nonlinear performance. Therefore, the four identical sub-circuits can oscillate at the same fundamental frequency f0, and the fundamental oscillating signal of one sub-circuit has phase differences of 90, 180and 270to that of the others, and the desired fourth harmonic signals can be combined due to their in phase relations, and the undesired fundamental signals, the second harmonic signals, the third harmonic signals and so on can be suppressed when the oscillating signals of the four sub-circuits are added in phase. The principle is firstly explained in this paper, and is proved in the experiment of a Ka-band quadruple-push oscillator. The measured output power of the desired fourth harmonic signal (4f0) was +1.67 dBm at the frequency of 35.8 GHz. The measured suppression of the undesired signals of the fundamental signal (f0), the second harmonic signal (2f0), the third harmonic signal (3f0) and the fifth harmonic signal (5f0) were -18.0 dBc, -17.9 dBc, -17.8 dBc and -35.5 dBc, respectively. The measured phase noise performances at 35.8 GHz were -104.0 dBc/Hz and -82.3 dBc/Hz at the offset frequency of 1 MHz and 100 kHz, respectively.