1-3hit |
Saburo TANAKA Shozen KUDO Yoshimi HATSUKADE Tatsuoki NAGAISHI Kazuaki NISHI Hajime OTA Shuichi SUZUKI
There is a possibility that individuals ingest contaminants that have been accidentally mixed with food because processed foods have become very common. Therefore a detection method of small contaminants in food and pharmaceuticals is required. High-Tc SQUID detection systems for metallic contaminants in foods and drugs have been developed for safety purposes. We developed two systems; one large system is for meat blocks and the other small system is for powdered drugs or packaged foods. Both systems consist of SQUID magnetometers, a permanent magnet for magnetization and a belt conveyor. All samples were magnetized before measurements and detected by high Tc SQUIDs. As a result, we successfully detected small syringe needles with a length of 2 mm in a meat block and a stainless steel ball as small as 0.3 mm in diameter.
Saburo TANAKA Takahiro MIZOGUCHI Hajime OTA Yoichi KONDO
Lymph-node detection system using a high Tc SQUID and ultra-small particles was proposed. Pseudo lymph nodes containing small iron particles were made and the magnetic signal was measured. The SQUID signal was proportional to the weight of the iron in the fluid. At the distance of 20 mm, the detectable minimum weight of the iron was 40 µg. We demonstrated that the possibility of the application of the system to the human body.
Hajime OTA Tatsuoki NAGAISHI Eiichi ARAI
The Time Domain Electromagnetic Method (TDEM) survey is one of the several geophysical exploration methods. In the conventional TDEM survey, an induction coil is used as the magnetometer. However, the measurement depth is limited to about 500 m. Using high Tc SQUIDs, there are expectations of large bandwidth and high sensitivity for the TDEM. We developed the high Tc SQUID TDEM system. We have reduced the system noise by developing a 20 mm20 mm step-edge type direct coupled SQUID and a low noise direct readout flux locked loop (FLL) circuit. We have also improved the slew rate, optimizing the parameter of the FLL circuit. Consequently, the system noise of less than 0.2 pT/Hz1/2 at 1 kHz was achieved in the earth's magnetic field. The slew rate was 7.3 mT/sec. We conducted field trials and confirmed that the TDEM using high Tc SQUIDs obtains information of deeper region with high precision compared with the TDEM using induction coils.