1-1hit |
Hanxi ZHU Ikuo YOSHIHARA Kunihito YAMAMORI Moritoshi YASUNAGA
We have developed Multi-modal Neural Networks (MNN) to improve the accuracy of symbolic sequence pattern classification. The basic structure of the MNN is composed of several sub-classifiers using neural networks and a decision unit. Two types of the MNN are proposed: a primary MNN and a twofold MNN. In the primary MNN, the sub-classifier is composed of a conventional three-layer neural network. The decision unit uses the majority decision to produce the final decisions from the outputs of the sub-classifiers. In the twofold MNN, the sub-classifier is composed of the primary MNN for partial classification. The decision unit uses a three-layer neural network to produce the final decisions. In the latter type of the MNN, since the structure of the primary MNN is folded into the sub-classifier, the basic structure of the MNN is used twice, which is the reason why we call the method twofold MNN. The MNN is validated with two benchmark tests: EPR (English Pronunciation Reasoning) and prediction of protein secondary structure. The reasoning accuracy of EPR is improved from 85.4% by using a three-layer neural network to 87.7% by using the primary MNN. In the prediction of protein secondary structure, the average accuracy is improved from 69.1% of a three-layer neural network to 74.6% by the primary MNN and 75.6% by the twofold MNN. The prediction test is based on a database of 126 non-homologous protein sequences.