The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Hao TIAN(1hit)

1-1hit
  • k-Dominant Skyline Query Computation in MapReduce Environment

    Md. Anisuzzaman SIDDIQUE  Hao TIAN  Yasuhiko MORIMOTO  

     
    PAPER

      Pubricized:
    2015/01/21
      Vol:
    E98-D No:5
      Page(s):
    1027-1034

    Filtering uninteresting data is important to utilize “big data”. Skyline query is popular technique to filter uninteresting data, in which it selects a set of objects that are not dominated by another from a given large database. However, a skyline query often retrieves too many objects to analyze intensively especially for high-dimensional dataset. To solve the problem, k-dominant skyline queries have been introduced. The size of databases sometimes become too large to compute in a centralized environment. Conventional algorithms for computing k-dominant skyline queries are not well suited for parallel and distributed environments, such as the MapReduce framework. In this paper, we consider an efficient parallel algorithm to process k-dominant skyline query in MapReduce framework. Extensive experiments demonstrate the scalability of proposed algorithm for synthetic big datasets under different settings of data distribution, dimensionality, and cardinality.