The search functionality is under construction.

Author Search Result

[Author] Haris GACANIN(10hit)

1-10hit
  • On Performance of MIMO-OFDM/TDM Using MMSE-FDE with Nonlinear HPA in a Multipath Fading Channel

    Amir LIGATA  Haris GACANIN  Tomaz JAVORNIK  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:9
      Page(s):
    1947-1957

    Multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) combined with time division multiplexing (OFDM/TDM) based on frequency domain equalization (FDE) has been proposed to reduce the high peak-to-average power ratio (PAPR) of OFDM and improve the bit error rate (BER) performance in comparison to the conventional OFDM. However, due to the nonlinearity of the high-power amplifier (HPA) at the transmitter and the fact that the PAPR problem is not completely eliminated, the nonlinear noise due to HPA saturation still degrades the BER performance. In this paper, we theoretically evaluate the effect of nonlinear HPA on the performance of MIMO-OFDM/TDM using a minimum-mean square-error frequency-domain equalizer (MMSE-FDE). We determine the equalization weights while taking into account the negative effect of HPA saturation and then evaluate the system performance in terms of average BER and ergodic capacity by way of both, numerical and computer simulation. Our simulation results have shown that appropriate system design can make MIMO-OFDM/TDM more robust against nonlinear degradation due to HPA saturation in comparison to MIMO-OFDM while reducing required signal-to-noise ratio (SNR) for the given target BER.

  • Uplink Pilot Allocation for Multi-Cell Massive MIMO Systems Open Access

    Wanming HAO  Osamu MUTA  Haris GACANIN  Hiroshi FURUKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/08/13
      Vol:
    E102-B No:2
      Page(s):
    373-380

    Pilot contamination due to pilot reuse in adjacent cells is a very serious problem in massive multi-input multiple-output (MIMO) systems. Therefore, proper pilot allocation is essential for improving system performance. In this paper, we formulate the pilot allocation optimization problem so as to maximize uplink sum rate of the system. To reduce the required complexity inherent in finding the optimum pilot allocation, we propose a low-complexity pilot allocation algorithm, where the formulated problem is decoupled into multiple subproblems; in each subproblem, the pilot allocation at a given cell is optimized while the pilot allocation in other cells id held fixed. This process is continued until the achievable sum rate converges. Through multiple iterations, the optimum pilot allocation is found. In addition, to improve users' fairness, we formulate fairness-aware pilot allocation as maximization problem of sum of user's logarithmic rate and solve the formulated problem using a similar algorithm. Simulation results show that the proposed algorithms match the good performance of the exhaustive search algorithm, meanwhile the users' fairness is improved.

  • Energy-Efficient Resource Allocation in Sensing-Based Spectrum Sharing for Cooperative Cognitive Radio Networks

    Wanming HAO  Shouyi YANG  Osamu MUTA  Haris GACANIN  Hiroshi FURUKAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:8
      Page(s):
    1763-1771

    Energy-efficient resource allocation is considered in sensing-based spectrum sharing for cooperative cognitive radio networks (CCRNs). The secondary user first listens to the spectrum allocated to the primary user (PU) to detect the PU state and then initiates data transmission with two power levels based on the sensing decision (e.g., idle or busy). Under this model, the optimization problem of maximizing energy efficiency (EE) is formulated over the transmission power and sensing time subject to some practical limitations, such as the individual power constraint for secondary source and relay, the quality of service (QoS) for the secondary system, and effective protection for the PU. Given the complexity of this problem, two simplified versions (i.e., perfect and imperfect sensing cases) are studied in this paper. We transform the considered problem in fractional form into an equivalent optimization problem in subtractive form. Then, for perfect sensing, the Lagrange dual decomposition and iterative algorithm are applied to acquire the optimal power allocation policy; for imperfect sensing, an exhaustive search and iterative algorithm are proposed to obtain the optimal sensing time and corresponding power allocation strategy. Finally, numerical results show that the energy-efficient design greatly improves EE compared with the conventional spectrum-efficient design.

  • Performance Improvement by Frequency-Domain Interleaving for OFDM/TDM Using MMSE-FDE in a Wireless Channel

    Haris GACANIN  Fumiyuki ADACHI  

     
    LETTER

      Vol:
    E92-B No:5
      Page(s):
    1813-1817

    The use of frequency-domain interleaving on a frame-by-frame basis for orthogonal frequency division multiplexing (OFDM) combined with time division multiplexing (OFDM/TDM) is presented. In conventional OFDM, FDE is not designed to exploit the channel frequency-selectivity and consequently, the frequency diversity gain cannot be obtained. To further improve the bit error rate (BER) performance of conventional OFDM an interleaving technique may be applied, but FDE cannot be fully exploited. In this letter, the OFDM/TDM signal (i.e., several concatenated OFDM signals) frequency components are interleaved at the transmitter and then, minimum mean square error frequency-domain equalization (MMSE-FDE) is applied at the receiver to obtain a larger frequency diversity gain. It is shown that frequency-domain interleaving on a frame-by-frame basis for OFDM/TDM using MMSE-FDE achieves improved BER performance in comparison with conventional OFDM due to enhanced frequency diversity gain.

  • Bit Error Rate Analysis of OFDM/TDM with Frequency-Domain Equalization

    Haris GACANIN  Shinsuke TAKAOKA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:2
      Page(s):
    509-517

    For alleviating the high peak-to-average power ratio (PAPR) problem of orthogonal frequency division multiplexing (OFDM), the OFDM combined with time division multiplexing (TDM) using frequency-domain equalization (FDE) was proposed. In this paper, the theoretical bit error rate (BER) analysis of the OFDM/TDM in a frequency-selective fading channel is presented. The conditional BER expression is derived, based on a Gaussian approximation of the inter-symbol interference (ISI) arising from channel frequency-selectivity, for the given set of channel gains. Various FDE techniques as in multi-carrier code division multiple access (MC-CDMA), i.e., zero forcing (ZF), maximum ratio combining (MRC) and minimum mean square error (MMSE) criteria are considered. The average BER performance is evaluated by Monte-Carlo numerical computation method using the derived conditional BER expression.

  • Enhanced Selected Mapping for Impulsive Noise Blanking in Multi-Carrier Power-Line Communication Systems Open Access

    Tomoya KAGEYAMA  Osamu MUTA  Haris GACANIN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/05/16
      Vol:
    E102-B No:11
      Page(s):
    2174-2182

    In this paper, we propose an enhanced selected mapping (e-SLM) technique to improve the performance of OFDM-PLC systems under impulsive noise. At the transmitter, the best transmit sequence is selected from among possible candidates so as to minimize the weighted sum of transmit signal peak power and the estimated receive one, where the received signal peak power is estimated at the transmitter using channel state information (CSI). At the receiver, a nonlinear blanking is applied to hold the impulsive noise under a given threshold, where impulsive noise detection accuracy is improved by the proposed e-SLM. We evaluate the probability of false alarms raised by impulsive noise detection and bit error rate (BER) of OFDM-PLC system using the proposed e-SLM. The results show the effectiveness of the proposed method in OFDM-PLC system compared with the conventional blanking technique.

  • FOREWORD Open Access

    Haris GACANIN  

     
    FOREWORD

      Vol:
    E97-B No:8
      Page(s):
    1493-1493
  • Performance Analysis on Uplink Pilot Allocation in TDD Massive MIMO Heterogeneous Networks

    Wanming HAO  Osamu MUTA  Haris GACANIN  Hiroshi FURUKAWA  

     
    PAPER-Communication Systems

      Vol:
    E100-A No:11
      Page(s):
    2314-2322

    Massive MIMO (mMIMO) is a promising technology for smart multimedia and wireless communication fields. In this paper, we investigate pilot allocation problem in two-tier time division duplex (TDD) heterogeneous network (HetNet) with mMIMO. First, we propose a new pilot allocation scheme for maximizing ergodic downlink sum rate of macro users (MUs) and small cell users (SUs), where the uplink pilot overhead and cross-tier interference are jointly considered. Then, we theoretically analyze the formulated problem and propose a low complexity one-dimensional search algorithm to obtain the optimum pilot allocation. In addition, we propose two suboptimal pilot allocation algorithms to simplify the computational process and improve SUs' fairness, respectively. Finally, simulation results show that the performance of the proposed scheme outperforms that of the traditional schemes.

  • Joint Frequency-Domain STTD and Antenna Diversity Reception Based on MMSE Criterion for OFDM/TDM

    Haris GACANIN  Fumiyuki ADACHI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:10
      Page(s):
    2952-2955

    In this letter, we introduce frequency-domain space-time transmit diversity (STTD) encoding/decoding to orthogonal frequency division multiplexing combined with time division multiplexing (OFDM/TDM) on a frame-by-frame basis (i.e., over several concatenated OFDM signals in the frequency-domain) to achieve both spatial and frequency diversity gains and improve the bit error rate (BER) performance. The theoretical BER performance is evaluated by numerical computation using the derived conditional BER and confirmed by computer simulation.

  • PAPR Advantage of Amplitude Clipped OFDM/TDM

    Haris GACANIN  Fumiyuki ADACHI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:3
      Page(s):
    931-934

    OFDM combined with TDM (OFDM/TDM) can be used to reduce a high peak-to-average power ratio (PAPR) of OFDM, but the PAPR reduction is not sufficient. To further reduce the PAPR, an amplitude clipping can be applied. In this letter, we investigate the effect of clipping on OFDM/TDM with and without channel coding. It is shown that amplitude clipped OFDM/TDM has an advantage over clipped OFDM with respect to the PAPR.