The search functionality is under construction.

Author Search Result

[Author] Hayate OKUHARA(3hit)

1-3hit
  • Body Bias Domain Partitioning Size Exploration for a Coarse Grained Reconfigurable Accelerator

    Yusuke MATSUSHITA  Hayate OKUHARA  Koichiro MASUYAMA  Yu FUJITA  Ryuta KAWANO  Hideharu AMANO  

     
    PAPER-Architecture

      Pubricized:
    2017/07/14
      Vol:
    E100-D No:12
      Page(s):
    2828-2836

    Body biasing can be used to control the leakage power and performance by changing the threshold voltage of transistors after fabrication. Especially, a new process called Silicon-On-Thin Box (SOTB) CMOS can control their balance widely. When it is applied to a Coarse Grained Reconfigurable Array (CGRA), the leakage power can be much reduced by precise bias control with small domain size including a small number of PEs. On the other hand, the area overhead for separating power domain and delivering a lot of wires for body bias voltage supply increases. This paper explores the grain of domain size of an energy efficient CGRA called CMA (Cool Mega Array). By using Genetic Algorithm based body bias assignment method, the leakage reduction of various grain size was evaluated. As a result, a domain with 2x1 PEs achieved about 40% power reduction with a 6% area overhead. It has appeared that a combination of three body bias voltages; zero bias, weak reverse bias and strong reverse bias can achieve the optimal leakage reduction and area overhead balance in most cases.

  • Analysis of Body Bias Control Using Overhead Conditions for Real Time Systems: A Practical Approach

    Carlos Cesar CORTES TORRES  Hayate OKUHARA  Nobuyuki YAMASAKI  Hideharu AMANO  

     
    PAPER-Computer System

      Pubricized:
    2018/01/12
      Vol:
    E101-D No:4
      Page(s):
    1116-1125

    In the past decade, real-time systems (RTSs), which must maintain time constraints to avoid catastrophic consequences, have been widely introduced into various embedded systems and Internet of Things (IoTs). The RTSs are required to be energy efficient as they are used in embedded devices in which battery life is important. In this study, we investigated the RTS energy efficiency by analyzing the ability of body bias (BB) in providing a satisfying tradeoff between performance and energy. We propose a practical and realistic model that includes the BB energy and timing overhead in addition to idle region analysis. This study was conducted using accurate parameters extracted from a real chip using silicon on thin box (SOTB) technology. By using the BB control based on the proposed model, about 34% energy reduction was achieved.

  • Optimization of Body Biasing for Variable Pipelined Coarse-Grained Reconfigurable Architectures

    Takuya KOJIMA  Naoki ANDO  Hayate OKUHARA  Ng. Anh Vu DOAN  Hideharu AMANO  

     
    PAPER-Computer System

      Pubricized:
    2018/03/09
      Vol:
    E101-D No:6
      Page(s):
    1532-1540

    Variable Pipeline Cool Mega Array (VPCMA) is a low power Coarse Grained Reconfigurable Architecture (CGRA) based on the concept of CMA (Cool Mega Array). It provides a pipeline structure in the PE array that can be configured so as to fit target algorithms and required performance. Also, VPCMA uses the Silicon On Thin Buried oxide (SOTB) technology, a type of Fully Depleted Silicon On Insulator (FDSOI), so it is possible to control its body bias voltage to provide a balance between performance and leakage power. In this paper, we study the optimization of the VPCMA body bias while considering simultaneously its variable pipeline structure. Through evaluations, we can observe that it is possible to achieve an average reduction of energy consumption, for the studied applications, of 17.75% and 10.49% when compared to respectively the zero bias (without body bias control) and the uniform (control of the whole PE array) cases, while respecting performance constraints. Besides, it is observed that, with appropriate body bias control, it is possible to extend the possible performance, hence enabling broader trade-off analyzes between consumption and performance. Considering the dynamic power as well as the static power, more appropriate pipeline structure and body bias voltage can be obtained. In addition, when the control of VDD is integrated, higher performance can be achieved with a steady increase of the power. These promising results show that applying an adequate optimization technique for the body bias control while simultaneously considering pipeline structures can not only enable further power reduction than previous methods, but also allow more trade-off analysis possibilities.