The search functionality is under construction.

Author Search Result

[Author] HeeJoung HWANG(3hit)

1-3hit
  • An Index Based on Irregular Identifier Space Partition for Quick Multiple Data Access in Wireless Data Broadcasting

    SeokJin IM  HeeJoung HWANG  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2016/07/20
      Vol:
    E99-D No:11
      Page(s):
    2809-2813

    This letter proposes an Index based on Irregular Partition of data identifiers (IIP), to enable clients to quickly access multiple data items on a wireless broadcast channel. IIP improves the access time by reducing the index waiting time when clients access multiple data items, through the use of irregular partitioning of the identifier space of data items. Our performance evaluation shows that with respect to access time, the proposed IIP outperforms the existing index schemes supporting multiple data access.

  • Quick Window Query Processing Using a Non-Uniform Cell-Based Index in Wireless Data Broadcast Environment

    SeokJin IM  HeeJoung HWANG  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E100-A No:4
      Page(s):
    1092-1096

    This letter proposes a Non-uniform Cell-based Index (NCI) to enable clients to quickly process window queries in the wireless spatial data broadcast environment. To improve the access time, NCI reduces the probe wait time by equalized spacing between indexes, using non-uniformly partitioned cells of data space. Through the performance evaluation, we show the proposed NCI outperforms the existing index schemes for window queries to spatial data in respect of access time.

  • A Two-Tier Spatial Index for Non-flat Spatial Data Broadcasting on Air

    SeokJin IM  HeeJoung HWANG  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E97-B No:12
      Page(s):
    2809-2818

    To support the processing of spatial window queries efficiently in a non-flat wireless data broadcasting system, we propose a Two-Tier Spatial Index (TTSI) that uses a two tier data space to distinguish hot and regular data items. Unlike an existing index which repeats regular data items located near hot items at the same time as the hot data items during the broadcast cycle, TTSI makes it possible to repeat only hot data items during a cycle. Simulations show that the proposed TTSI outperforms the existing scheme with respect to access time and energy consumption.