1-3hit |
Hyun-il LIM Heewan PARK Seokwoo CHOI Taisook HAN
A software birthmark means the inherent characteristics of a program that can be used to identify the program. A comparison of such birthmarks facilitates the detection of software theft. In this paper, we propose a static Java birthmark based on a set of stack patterns, which reflect the characteristic of Java applications. A stack pattern denotes a sequence of bytecodes that share their operands through the operand stack. A weight scheme is used to balance the influence of each bytecode in a comparison of the birthmarks. We evaluate the proposed birthmark with respect to two properties required for a birthmark: credibility and resilience. The empirical results show that the proposed birthmark is highly credible and resilient to program transformation. We also compare the proposed birthmark with existing birthmarks, such as that of Tamada et al. and the k-gram birthmark. The experimental results show that the proposed birthmark is more stable than the birthmarks in terms of resilience to program transformation. Thus, the proposed birthmark can provide more reliable evidence of software theft when the software is modified by someone other than author.
Byungsik YOON Heewan PARK Sangwon KANG
This paper proposes a low power artificial bandwidth extension (ABE) technique that reduces computational complexity by introducing a fast codebook mapping method. We also introduce a weighted classified codebook mapping method for constructing the spectral envelope of the wideband speech signal. Classified codebooks are used to reduce spectrum mapping errors caused by characteristic difference among voiced, unvoiced and onset sound. The weighted distortion measure is also used to handle the spectral sensibility. The performance of the proposed ABE system is evaluated by a spectral distortion (SD), a perceptual evaluation of speech quality (PESQ), informal listening tests and weighted million operations per second (WMOPS) calculations. With the use of fast codebook mapping, the WMOPS complexity of the codebook mapping module is reduced by 45.17%.
Heewan PARK Byungsik YOON Sangwon KANG Andreas SPANIAS
A new codebook mapping algorithm for artificial bandwidth extension (ABE) is introduced in this paper. We design a wideband line spectrum pair (LSP) codebook which is coupled with the same index as the LSP codebook of a narrowband speech codec. The received narrowband LSP codebook indices are used to directly induce wideband LSP codewords. Thus, the proposed scheme eliminates codebook search processing to estimate the wideband spectrum envelope. We apply the proposed scheme to bandwidth extension in adaptive multi-rate (AMR) compressed domain. Its performance is assessed via the perceptual evaluation of speech quality (PESQ), informal listening tests, and weighted million operations per second (WMOPS) calculations.