The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Hideaki TAKEDA(2hit)

1-2hit
  • Interdisciplinary Collaborator Recommendation Based on Research Content Similarity

    Masataka ARAKI  Marie KATSURAI  Ikki OHMUKAI  Hideaki TAKEDA  

     
    PAPER

      Pubricized:
    2016/10/13
      Vol:
    E100-D No:4
      Page(s):
    785-792

    Most existing methods on research collaborator recommendation focus on promoting collaboration within a specific discipline and exploit a network structure derived from co-authorship or co-citation information. To find collaboration opportunities outside researchers' own fields of expertise and beyond their social network, we present an interdisciplinary collaborator recommendation method based on research content similarity. In the proposed method, we calculate textual features that reflect a researcher's interests using a research grant database. To find the most relevant researchers who work in other fields, we compare constructing a pairwise similarity matrix in a feature space and exploiting existing social networks with content-based similarity. We present a case study at the Graduate University for Advanced Studies in Japan in which actual collaborations across departments are used as ground truth. The results indicate that our content-based approach can accurately predict interdisciplinary collaboration compared with the conventional collaboration network-based approaches.

  • Topic Representation of Researchers' Interests in a Large-Scale Academic Database and Its Application to Author Disambiguation

    Marie KATSURAI  Ikki OHMUKAI  Hideaki TAKEDA  

     
    PAPER

      Pubricized:
    2016/01/14
      Vol:
    E99-D No:4
      Page(s):
    1010-1018

    It is crucial to promote interdisciplinary research and recommend collaborators from different research fields via academic database analysis. This paper addresses a problem to characterize researchers' interests with a set of diverse research topics found in a large-scale academic database. Specifically, we first use latent Dirichlet allocation to extract topics as distributions over words from a training dataset. Then, we convert the textual features of a researcher's publications to topic vectors, and calculate the centroid of these vectors to summarize the researcher's interest as a single vector. In experiments conducted on CiNii Articles, which is the largest academic database in Japan, we show that the extracted topics reflect the diversity of the research fields in the database. The experiment results also indicate the applicability of the proposed topic representation to the author disambiguation problem.