1-3hit |
Naoki MINATO Hideaki TAMAI Hideyuki IWAMURA Satoko KUTSUZAWA Shuko KOBAYASHI Kensuke SASAKI Akihiko NISHIKI
We studied 10 Gbit/s-based time-spreading and wave-length-hopping (TS-WH) optical code division multiplexing (OCDM) using fiber Bragg gratings (FBGs). To apply it to such the high bit rate system more than ten gigabit, two techniques are adopted. One is encoding with the maximum spreading time of 400 ps, which is four times as data bit duration, to encode without shortening chip duration. Another is encoder design. The apodized refractive index profile to the unit-gratings composing the encoder is designed to encode the pulses with 10-20 ps width at 10 Gbit/s rate. Using these techniques, 210 Gbit/s OCDM is demonstrated successfully. In this scheme, transmission distance is limited due to dispersion effect because the signal has wide bandwidth to assign a wavelength-hopping pattern. We use no additional devices to compensate the dispersion, in order to construct simple and cost-effective system. Novel FBG encoder is designed to incorporate both encoding and compensating of group delay among chip pulses within one device. We confirm the extension of transmission distance in the TS-WH OCDM from the demonstration over 40 km-long single mode fiber.
Hiroyuki SAITO Naoki MINATO Hideaki TAMAI Hironori SASAKI
Capital expenditure (CAPEX) reduction and efficient wavelength allocation are critical for the future access networks. Elastic lambda aggregation network (EλAN) based on WDM and OFDM technologies is expected to realize efficient wavelength allocation. In this paper, we propose adaptive bandwidth allocation (ABA) algorithm for EλAN under the conditions of crowded networks, in which modulation format, symbol rate and the number of sub-carriers are adaptively decided based on the distance of PON-section, QoS and bandwidth demand of each ONU. Network simulation results show that the proposed algorithm can effectively reduce the total bandwidth and achieve steady high spectrum efficiency and contribute to the further reduction of CAPEX of future optical access networks.
Yasuhiro KOTANI Hideyuki IWAMURA Masahiro SARASHINA Hideaki TAMAI Masayuki KASHIMA
In this paper, a novel charge coupled device matched filter (CCD-MF) for Electrical code division multiplexing (ECDM) decoder is proposed and experimentally demonstrated. Simulation results clarify the influence of low charge transfer efficiency (CTE) and the validity of a parallel CCD-MF we proposed. A 15-channel ECDM system using a 2 Gchip/s, 2-parallel CCD-MF is experimentally demonstrated.