1-2hit |
Hiroyuki ARAI Isao MIYAGAWA Hideki KOIKE Miki HASEYAMA
We propose a novel technique for estimating the number of people in a video sequence; it has the advantages of being stable even in crowded situations and needing no ground-truth data. By analyzing the geometrical relationships between image pixels and their intersection volumes in the real world quantitatively, a foreground image directly indicates the number of people. Because foreground detection is possible even in crowded situations, the proposed method can be applied in such situations. Moreover, it can estimate the number of people in an a priori manner, so it needs no ground-truth data unlike existing feature-based estimation techniques. Experiments show the validity of the proposed method.
Kyoko SUDO Tatsuya OSAWA Kaoru WAKABAYASHI Hideki KOIKE Kenichi ARAKAWA
We have proposed a method to detect and quantitatively extract anomalies from surveillance videos. Using our method, anomalies are detected as patterns based on spatio-temporal features that are outliers in new feature space. Conventional anomaly detection methods use features such as tracks or local spatio-temporal features, both of which provide insufficient timing information. Using our method, the principal components of spatio-temporal features of change are extracted from the frames of video sequences of several seconds duration. This enables anomalies based on movement irregularity, both position and speed, to be determined and thus permits the automatic detection of anomal events in sequences of constant length without regard to their start and end. We used a 1-class SVM, which is a non-supervised outlier detection method. The output from the SVM indicates the distance between the outlier and the concentrated base pattern. We demonstrated that the anomalies extracted using our method subjectively matched perceived irregularities in the pattern of movements. Our method is useful in surveillance services because the captured images can be shown in the order of anomality, which significantly reduces the time needed.