1-1hit |
Naoya KAWAMOTO Naoto MATSUO Atsushi MASUDA Yoshitaka KITAMON Hideki MATSUMURA Yasunori HARADA Tadaki MIYOSHI Hiroki HAMADA
The role of hydrogen in the Si film during excimer laser annealing (ELA) has been successfully studied by using a novel sample structure, which is stacked by a-Si film and SiN film. Hydrogen contents in the Si films during ELA are changed by preparing samples with hydrogen content of 2.3-8.2 at.% in the SiN films with a use of catalytic (Cat)-CVD method. For the low concentration of hydrogens in the Si film, the grain size increases by decreasing hydrogen concentration in the Si film, and the internal stress of the film decreases as increasing the shot number. For the high concentration of hydrogens in the Si film, hydrogen burst was observed at 500 mJ/cm2 and the dependence of the internal stress on the shot number becomes weak even at 318 mJ/cm2. These phenomena can be understood basically using the secondary grain growth mechanism, which we have proposed.