The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Hirofumi TAKISHITA(2hit)

1-2hit
  • Analysis of SCM-Based SSD Performance in Consideration of SCM Access Unit Size, Write/Read Latencies and Application Request Size

    Hirofumi TAKISHITA  Yutaka ADACHI  Chihiro MATSUI  Ken TAKECUHI  

     
    PAPER

      Vol:
    E101-C No:4
      Page(s):
    253-262

    NAND flash memories used in solid-state drives (SSDs) will be replaced with storage-class memories (SCMs), which are comparable with NAND flash in their cost, and with DRAM in their speed. This paper describes the performance difference of the SCM/NAND flash hybrid SSD and the SCM-based SSD with between sector-unit read (512 Byte) and page-unit read (16 KByte, NAND flash page-size) using synthetic and real workload. Also, effect of the SCM read-unit size on SSD performance are analyzed. When SCM write/read latency is 0.1 us, performance difference of the SCM/NAND flash hybrid SSD with between page- and sector-unit read is about 1% and 6% at most for the write-intensive and read-intensive workloads, respectively. However, performance of the SCM-based SSD is significantly improved when sector-unit read is used because extra read latency does not occur. Especially, the SCM-based SSD IOPS is improved by 131% for proj_3 (read-hot-random), because its read request size is small but its read request ratio is large. This paper also shows IOPS of SCM-based SSD write/read with sector-unit read can be predicted by the average write/read request size of workloads.

  • Variation of SCM/NAND Flash Hybrid SSD Performance, Reliability and Cost by Using Different SSD Configurations and Error Correction Strengths

    Hirofumi TAKISHITA  Shuhei TANAKAMARU  Sheyang NING  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E99-C No:4
      Page(s):
    444-451

    Storage-Class Memory (SCM) and NAND flash hybrid Solid-State Drive (SSD) has advantages of high performance and low power consumption compared with NAND flash only SSD. In this paper, first, three SSD configurations are investigated. Three different SCMs are used with 0.1 µs, 1 µs and 10 µs read/write latencies, respectively, and the required SCM/NAND flash capacity ratios are analyzed to maintain the same SSD performance. Next, by using the three SSD configurations, the variation of SSD reliability, performance and cost are analyzed by changing error correction strengths. The SSD reliability of acceptable SCM and NAND flash Bit Error Rates (BERs) is limited by achieving specified SSD performance with error correction, and/or limited by SCM and NAND flash parity size and SSD cost. Lastly, the SSD replacement cost is also analyzed by considering the limitation of NAND flash write/erase cycles. The purpose of this paper is to provide a design guideline for obtaining high performance, highly reliable and cost-effective SCM/NAND hybrid structure SSD with ECC.