The search functionality is under construction.

Author Search Result

[Author] Hiroki NISHIYAMA(3hit)

1-3hit
  • Dynamic Load Balancing Method Based on Congestion Prediction for IP/LEO Satellite Networks

    Daigo KUDOH  Kenichi KASHIBUCHI  Hiroki NISHIYAMA  Nei KATO  

     
    PAPER

      Vol:
    E92-B No:11
      Page(s):
    3326-3334

    In Low Earth Orbit (LEO) satellite networks, the user distributions are unbalanced due to the geography and the population dispersion. As a result, some satellites have few traffic loads, while others have heavy traffic loads which often lead to congestion events. In this paper, we propose a novel load balancing method based on congestion prediction. In the proposed method, each satellite detects areas where congestion often occurs and conveys their positions to its adjacent satellites. In those areas, the concerned satellites perform load balancing algorithms to prevent congestion. The performance of the proposed method is evaluated through a number of simulations. The simulation results demonstrate that the proposed scheme improves packet drop rate, end-to-end delay, and throughput.

  • Internet of Things (IoT): Present State and Future Prospects Open Access

    Yuichi KAWAMOTO  Hiroki NISHIYAMA  Nei KATO  Naoko YOSHIMURA  Shinichi YAMAMOTO  

     
    INVITED PAPER

      Vol:
    E97-D No:10
      Page(s):
    2568-2575

    The recent development of communication devices and wireless network technologies continues to advance the new era of the Internet and telecommunications. The various “things”, which include not only communication devices but also every other physical object on the planet, are also going to be connected to the Internet, and controlled through wireless networks. This concept, which is referred to as the “Internet of Things (IoT)”, has attracted much attention from many researchers in recent years. The concept of IoT can be associated with multiple research areas such as body area networks, Device-to-Device (D2D) communications networks, home area networks, Unmanned Aerial Vehicle (UAV) networks, satellite networks, and so forth. Also, there are various kinds of applications created by using IoT technologies. Thus, the concept of the IoT is expected to be integrated into our society and support our daily life in the near future. In this paper, we introduce different classifications of IoT with examples of utilizing IoT technologies. In addition, as an example of a practical system using IoT, a tsunami detection system (which is composed of a satellite, sensor terminals, and an active monitoring system for real-time simultaneous utilization of the devices) is introduced. Furthermore, the requirements of the next generation systems with the IoT are delineated in the paper.

  • A Highly Efficient DAMA Algorithm for Making Maximum Use of both Satellite Transponder Bandwidth and Transmission Power

    Katsuya NAKAHIRA  Takatoshi SUGIYAMA  Hiroki NISHIYAMA  Nei KATO  

     
    PAPER-Satellite Communications

      Vol:
    E95-B No:8
      Page(s):
    2619-2630

    This paper proposes a novel satellite channel allocation algorithm for a demand assigned multiple access (DAMA) controller. In satellite communication systems, the channels' total bandwidth and total power are limited by the satellite's transponder bandwidth and transmission power (satellite resources). Our algorithm is based on multi-carrier transmission and adaptive modulation methods. It optimizes channel elements such as the number of sub-carriers, modulation level, and forward error correction (FEC) coding rate. As a result, the satellite's transponder bandwidth and transmission power can be simultaneously used to the maximum and the overall system capacity, i.e., total transmission bit rate, will increase. Simulation results show that our algorithm increases the overall system capacity by 1.3 times compared with the conventional fixed modulation algorithm.