The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Hiroshi DOI(4hit)

1-4hit
  • An ID-SP-M4M Scheme and Its Security Analysis

    Lihua WANG  Eiji OKAMOTO  Ying MIAO  Takeshi OKAMOTO  Hiroshi DOI  

     
    PAPER-Signatures

      Vol:
    E90-A No:1
      Page(s):
    91-100

    ID-SP-M4M scheme means ID-based series-parallel multisignature schemes for multi-messages. In this paper, we investigate series-parallel multisignature schemes for multi-messages and propose an ID-SP-M4M scheme based on pairings in which signers in the same subgroup sign the same message, and those in different subgroups sign different messages. Our new scheme is an improvement over the series-parallel multisignature schemes introduced by Doi et al.[6]-[8] and subsequent results such as the schemes proposed by Burmester et al.[4] and the original protocols proposed by Tada [20],[21], in which only one message is to be signed. Furthermore, our ID-SP-M4M scheme is secure against forgery signature attack from parallel insiders under the BDH assumption.

  • An Electronic Voting Protocol Preserving Voter's Privacy

    Hiroshi YAMAGUCHI  Atsushi KITAZAWA  Hiroshi DOI  Kaoru KUROSAWA  Shigeo TSUJII  

     
    PAPER-Applications of Information Security Techniques

      Vol:
    E86-D No:9
      Page(s):
    1868-1878

    In this paper we present a new, two-centered electronic voting scheme that is capable of preserving privacy, universal verifiability, and robustness. An interesting property of our scheme is the use of double encryption with additive homomorphic encryption functions. In the two-centered scheme, the first center decrypts the ballots, checks the eligibility of the voters, and multiplies each eligible vote, which is still encrypted in the cryptosystem of the second center. After the deadline is reached, the second center obtains the final tally by decrypting the accumulated votes. As such, both centers cannot know the content of any individual vote, as each vote is hidden in the accumulated result, therefore the privacy of the voters is preserved. Our protocols, together with some existing protocols, allow everyone to verify that all valid votes are correctly counted. We apply the r-th residue cryptosystem as the homomorphic encryption function. Although decryption in the r-th residue cryptosystem requires an exhaustive search for all possible values, based on experiments we show that it is possible to achieve desirable performance for large-scale elections.

  • Secure and Efficient IBE-PKE Proxy Re-Encryption

    Takeo MIZUNO  Hiroshi DOI  

     
    PAPER-Public Key Cryptography

      Vol:
    E94-A No:1
      Page(s):
    36-44

    In proxy re-encryption schemes, a semi-trusted entity called a proxy can convert a ciphertext encrypted for Alice into a new ciphertext for Bob without seeing the underlying plaintext. Several proxy re-encryption schemes have been proposed, however, only two schemes which enables the conversion of IBE ciphertexts to PKE ciphertexts has been proposed. One of schemes has some drawbacks such that the size of the re-encrypted ciphertext increases and Bob must be aware of existence of the proxy, which means Bob cannot decrypt a re-encrypted ciphertext with same PKE decryption algorithm. The other one achieves security under Selective-ID model. We propose a new, efficient scheme that enables the conversion of IBE ciphertexts to PKE ciphertexts, and prove full-ID CPA security in the standard model. In our scheme, the size of the re-encrypted ciphertext is optimal and Bob should not aware of existence of the proxy. As far as we know, this is the first IBE-PKE type scheme that holds the above properties.

  • A Fully Secure Spatial Encryption Scheme

    Daisuke MORIYAMA  Hiroshi DOI  

     
    PAPER-Public Key Cryptography

      Vol:
    E94-A No:1
      Page(s):
    28-35

    Spatial encryption is one of the generalized identity based encryption proposed by Boneh and Hamburg in 2008. Spatial encryption provides a framework for generating many identity based cryptosystems such as broadcast encryption, forward secure encryption or ring signature. While this may appear to be an attractive feature, all existing spatial encryption schemes are only selectively secure. In this paper, we present a fully secure spatial encryption scheme based on the three composite order bilinear groups.