The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Hiroshi SHIMAMORI(2hit)

1-2hit
  • Simple Multiphase Control for Paralleled Converter System

    Teruhiko KOHAMA  Gen ENDO  Hiroshi SHIMAMORI  Tamotsu NINOMIYA  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E88-B No:12
      Page(s):
    4636-4642

    A simple method for interleaving operation suitable for paralleled converter system is proposed. This method automatically detects the number of converters and adjusts phases between converter modules equally for any number of modules in the system. The method is realized by simple analog circuit which is easily implemented as conventional PWM controller IC. Principle of multiphase controlling circuit is introduced, and the influence of non-ideal circuit parameters on interleaving operation are discussed. A compensator for reducing phase error is also proposed to achieve wide-use application. Experimental and analytical results confirm the effectiveness of the proposed method.

  • New Switching Control for Synchronous Rectifications in Low-Voltage Paralleled Converter System without Voltage and Current Fluctuations

    Hiroshi SHIMAMORI  Teruhiko KOHAMA  Tamotsu NINOMIYA  

     
    PAPER-Electronic Circuits

      Vol:
    E88-C No:3
      Page(s):
    395-402

    Paralleled converter system with synchronous rectifiers (SRs) causes several problems such as surge voltage, inhalation current and circulating current. Generally, the system stops operation of the SRs in light load to avoid these problems. However, simultaneously, large voltage fluctuations in the output of the modules are occurred due to forward voltage drop of diode. The fluctuations cause serious faults to the semiconductor devices working in very low voltage such as CPU and VLSI. Moreover, the voltage fluctuations generate unstable current fluctuations in the paralleled converter system with current-sharing control. This paper proposes new switching control methods for rectifiers to reduce the voltage and current fluctuations. The effectiveness of the proposed methods is confirmed by computer simulation and experimental results.