1-1hit |
Yasunobu NAKASE Hiroyuki KONO Yoshio MATSUDA Hisanori HAMANO
Cursor RAMs have been composed of two memory planes. A cursor pattern is stored in these planes with 2-bit data depth. While the pixel port requires data from both planes at the same time, the MPU port accesses either one of the planes at a time. Since the address space is defined differently between the ports, conventional cursor RAMs could not have dealt with these different access ways at real time. This paper proposes a dual port cursor RAM with a dynamic data alignment architecture. The architecture processes the different access ways at real time, and reduces a large amount of control circuitry. Conventional cursor RAMs have been organized with a single port memory because dual port memory cells have been large. We have applied the port swap architecture which has reduced the cell size. The control block is further simplified because the controller no longer emulate a dual port memory. The cursor RAM with these architectures is fabricated with a double metal 0. 5 µm CMOS process technology. The active area is 1. 51. 6 mm2 including a couple of shift registers and a control block. It operates up to 263 MHz at the supply voltage of 3. 3 V.