The search functionality is under construction.

Author Search Result

[Author] Hiroyuki NOZAKA(2hit)

1-2hit
  • The Effectiveness of Data Augmentation for Mature White Blood Cell Image Classification in Deep Learning — Selection of an Optimal Technique for Hematological Morphology Recognition —

    Hiroyuki NOZAKA  Kosuke KAMATA  Kazufumi YAMAGATA  

     
    PAPER-Smart Healthcare

      Pubricized:
    2022/11/22
      Vol:
    E106-D No:5
      Page(s):
    707-714

    The data augmentation method is known as a helpful technique to generate a dataset with a large number of images from one with a small number of images for supervised training in deep learning. However, a low validity augmentation method for image recognition was reported in a recent study on artificial intelligence (AI). This study aimed to clarify the optimal data augmentation method in deep learning model generation for the recognition of white blood cells (WBCs). Study Design: We conducted three different data augmentation methods (rotation, scaling, and distortion) on original WBC images, with each AI model for WBC recognition generated by supervised training. The subjects of the clinical assessment were 51 healthy persons. Thin-layer blood smears were prepared from peripheral blood and subjected to May-Grünwald-Giemsa staining. Results: The only significantly effective technique among the AI models for WBC recognition was data augmentation with rotation. By contrast, the effectiveness of both image distortion and image scaling was poor, and improved accuracy was limited to a specific WBC subcategory. Conclusion: Although data augmentation methods are often used for achieving high accuracy in AI generation with supervised training, we consider that it is necessary to select the optimal data augmentation method for medical AI generation based on the characteristics of medical images.

  • Multi-Layer Virtual Slide Scanning System with Multi-Focus Image Fusion for Cytopathology and Image Diagnosis Open Access

    Hiroyuki NOZAKA  Tomisato MIURA  Zhongxi ZHENG  

     
    PAPER-Diagnostic Systems

      Vol:
    E96-D No:4
      Page(s):
    856-863

    Objective: The virtual slides are high-magnification whole digital images of histopathological tissue sections. The existing virtual slide system, which is optimized for scanning flat and smooth plane slides such as histopathological paraffin-embedded tissue sections, but is unsuitable for scanning irregular plane slides such as cytological smear slides. This study aims to develop a virtual slide system suitable for cytopathology slide scanning and to evaluate the effectiveness of multi-focus image fusion (MF) in cytopathological diagnosis. Study Design: We developed a multi-layer virtual slide scanning system with MF technology. Tumors for this study were collected from 21 patients diagnosed with primary breast cancer. After surgical extraction, smear slide for cytopathological diagnosis were manufactured by the conventional stamp method, fine needle aspiration method (FNA), and tissue washing method. The stamp slides were fixed in 95% ethanol. FNA and tissue washing samples were fixed in CytoRich RED Preservative Fluid, a liquid-based cytopathology (LBC). These slides were stained with Papanicolaou stain, and scanned by virtual slide system. To evaluate the suitability of MF technology in cytopathological diagnosis, we compared single focus (SF) virtual slide with MF virtual slide. Cytopathological evaluation was carried out by 5 pathologists and cytotechnologists. Results: The virtual slide system with MF provided better results than the conventional SF virtual slide system with regard to viewing inside cell clusters and image file size. Liquid-based cytology was more suitable than the stamp method for virtual slides with MF. Conclusion: The virtual slide system with MF is a useful technique for the digitization in cytopathology, and this technology could be applied to tele-cytology and e-learning by virtual slide system.