The search functionality is under construction.

Author Search Result

[Author] Hiroyuki OHMINE(4hit)

1-4hit
  • Separated Equivalent Edge Current Method for Calculating Scattering Cross Sections of Polyhedron Structures

    Yonehiko SUNAHARA  Hiroyuki OHMINE  Hiroshi AOKI  Takashi KATAGI  Tsutomu HASHIMOTO  

     
    PAPER-Antennas and Propagation

      Vol:
    E76-B No:11
      Page(s):
    1439-1444

    This paper describes a novel method to calculate the fields scattered by a polyhedron structure for an incident plane wave. In this method, the fields diffracted by an edge are calculated using the equivalent edge currents which are separated into components dependent on each of the two surfaces which form the edge. The separated equivalent edge currents are based on the Geometrical Theory of Diffraction (GTD). Using this Separated Equivalent Edge Current Method (SEECM) , fields scattered by a polyhedron structure can be calculated without special treatment of the singularity in the diffraction coefficient. This method can be also applied successfully to structures with convex surfaces by modeling them as polyhedron structures.

  • Triple-Bands Broad Bandwidth Dipole Antenna with Multiple Parasitic Elements

    Toru FUKASAWA  Hiroyuki OHMINE  Kazuhito MIYASHITA  Yoshiyuki CHATANI  

     
    PAPER-Mobile Antennas

      Vol:
    E84-B No:9
      Page(s):
    2476-2481

    This paper proposes serially arranged two parasitic elements above a fed dipole to obtain broad bandwidth in resonant frequency of a parasitic element. The above antenna can be used in triple-bands with one feed point. Its design method using FDTD is also presented. Next, application of the triple-bands antenna is proposed for 3-sector base station antenna. Its characteristics of return loss and radiation patterns are indicated. Calculated values are in good agreement with measured ones.

  • A TM21 Mode Annular-Ring Microstrip Antenna for Personal Satellite Communication Use

    Hiroyuki OHMINE  Yonehiko SUNAHARA  Makoto MATSUNAGA  

     
    PAPER-Antenna and diversity techniques

      Vol:
    E79-B No:9
      Page(s):
    1227-1233

    This paper presents a configuration of circularly polarized annular-ring microstrip antenna (ARMSA) and its design method to obtain high gain and low axial ratio including the analysis of finite ground plane effect using G.T.D. for personal satellite communication use. The ARMSA excited at TM21 mode through co-planar branch-line hybrid coupler for circular polarization produces a conical pattern which has high gain in low elevation angle. The relation of gain and axial ratio versus the dielectric constant of substrate are shown and the existence of the dielectric constant which satisfies two requirements, that is, high gain and low axial ratio are clarified. For car-top application, experimental results in the L-band showed satisfactory characteristics for vehicle antenna.

  • A New High Gain Circularly Polarized Microstrip Antenna with Diagonal Short

    Hiroyuki OHMINE  Hitoshi MIZUTAMARI  Yonehiko SUNAHARA  

     
    PAPER-Antennas and Propagation

      Vol:
    E80-B No:7
      Page(s):
    1090-1097

    A new configuration of high gain circularly polarized microstrip antenna with a diagonal short and its analysis using boundary element method with a radiation load are presented. The center of a radiating patch is shorted with a 45-degree diagonal offset for not only obtaining a high gain but exciting a circular polarization. This configuration leads to achieving high gain with keeping a very low profile configuration. Boundary element method with radiation load which takes into account the effect of radiation loss is employed to analyze this complicated configuration. The radiation load, which is very important when boundary element method is applied to antenna analyses, can be obtained from radiation admittance using recurring technique, so that the accuracy of the antenna characteristic calculations can be improved. This antenna was designed and tested in the L-band and good characteristics, axial ratios and radiation patterns, have been verified.