The search functionality is under construction.

Author Search Result

[Author] Hisa-Aki TANAKA(3hit)

1-3hit
  • Averaging Method Analysis of Synchronization Characteristics of a Large Number of Nonlinearly Coupled van der Pol Oscillators

    Kuniyasu SHIMIZU  Tetsuro ENDO  Hisa-Aki TANAKA  

     
    PAPER-Nonlinear Phenomena and Analysis

      Vol:
    E90-A No:10
      Page(s):
    2162-2169

    The averaged equation for an arbitrary number of oscillators coupled by nonlinear coupling scheme invented by S. Nagano, is derived. This system is invented as a model of uni-cellular slime amoeba. By using the averaged equation, we investigate the synchronization characteristics of five coupled oscillators and a large number of coupled oscillators. In particular, we present the statistical property of coupled oscillators in terms of coupling factor γ. We also investigate the effect of linear and nonlinear coupling terms for achieving synchronization, and confirm that the nonlinear coupling term plays an important role for strong synchronization than linear coupling term does.

  • Nonlinear Circuit in Complex Time --Case of Phase-Locked Loops--

    Hisa-Aki TANAKA  Shin'ichi OISHI  Kazuo HORIUCHI  

     
    LETTER

      Vol:
    E76-A No:12
      Page(s):
    2055-2058

    We analyze the nonlinear dynamics of PLL from the "complex" singularity structure by introducing the complex time. The most important results which we have obtained in this work are as follow: (1) From the psi-series expansion of the solution, the local behavior in the neighbourhood of a movable singularity is mapped onto an integrable differential equation: the Ricatti equation. (2) From the movable pole of the Ricatti equation, a set of infinitly clustered singularities about a movable singularity is shown to exist for the equation of PLL by the multivalued mapping. The above results are interesting because the clustering and/or the fractal distribution of singularities is known to be a characteristic feature of the non-integrability or chaos. By using the method in this letter, we can present a circumstantial evidence for chaotic dynamics without assuming any small parameters in the equation of PLL.

  • Numerical Verification of Algebraic Non-integrability for High Dimensional Dynamical Systems

    Hisa-Aki TANAKA  Shin'ichi OISHI  Atsushi OKADA  

     
    LETTER

      Vol:
    E76-A No:7
      Page(s):
    1117-1120

    The singular point analysis, such as the Painlev test and Yoshida's test, is a computational method and has been implemented in a symbolic computational manner. But, in applying the singular point analysis to high dimensional and/or "complex" dynamical systems, we face with some computational difficulties. To cope with these difficulties, we propose a new numerical technique of the singular point analysis with the aid of the self-validating numerics. Using this technique, the singular point analysis can now be applicable to a wide class of high dimensional and/or "complex" dynamical systems, and in many cases dynamical properties such as the algebraic non-integrability can be proven for such systems.