1-5hit |
Dong-Sun JANG Ui-Seok JEONG Gi-Hoon RYU Kyunbyoung KO
In this paper, we show exact bit error rates (BERs) for orthogonal space-time block code (OSTBC) decoded-and-forward (DF) relaying networks over independent and non-identically distributed (INID) Rayleigh fading channels. We consider both non-adaptive DF (non-ADF) and adaptive DF (ADF) schemes for OSTBC relay networks with arbitrary multiple-input multiple-output (MIMO) relay antenna configurations. For each scheme, we derive the probability density functions (PDFs) of indirect link and combined links, respectively. Based on the derived PDFs, we express exact BERs and then, their accuracy is verified by the comparison with simulation results. It is confirmed that the transmit diversity gain of the relay node can be obtained when the relay is close to the source and then, the receive diversity gain of the relay node as well as ADF gain over non-ADF can be obtained when the relay is close to the destination.
In this letter, we propose an OFDMA/CDM-based cellular system, which accommodates users in different frequency bands and multiplexes user data symbols with frequency domain spreading. The proposed system utilizes random codes to discriminate between cells and adopts the pre-equalization to enhance the performance. An efficient power allocation scheme is suggested for cellular applications with a transmit power constraint. In particular, the validity of the OFDMA/CDM-based cellular system is examined, by investigating its performance as a function of the number of multiplexed data symbols at different locations.
Permutation polynomial based interleavers over integer rings, in particular quadratic permutation polynomials have been widely studied. In this letter, higher degree permutation polynomials for interleavers are considered for interleavers and permutation polynomials superior to quadratic permutation polynomials are found for some lengths.
Hoon RYU Jung-Lok YU Duseok JIN Jun-Hyung LEE Dukyun NAM Jongsuk LEE Kumwon CHO Hee-Jung BYUN Okhwan BYEON
We discuss a new high performance computing service (HPCS) platform that has been developed to provide domain-neutral computing service under the governmental support from “EDucation-research Integration through Simulation On the Net” (EDISON) project. With a first focus on technical features, we not only present in-depth explanations of the implementation details, but also describe the strengths of the EDISON platform against the successful nanoHUB.org gateway. To validate the performance and utility of the platform, we provide benchmarking results for the resource virtualization framework, and prove the stability and promptness of the EDISON platform in processing simulation requests by analyzing several statistical datasets obtained from a three-month trial service in the initiative area of computational nanoelectronics. We firmly believe that this work provides a good opportunity for understanding the science gateway project ongoing for the first time in Republic of Korea, and that the technical details presented here can be served as an useful guideline for any potential designs of HPCS platforms.
Permutation polynomial based interleavers over integer rings have recently received attention for their excellent channel coding performance, elegant algebraic properties and simplicity of implementation. In this letter, it is shown that permutation polynomial based interleavers of practical interest is decomposed into linear permutation polynomials. Based on this observation, it is shown that permutation polynomial based interleavers as well as their inverses can be efficiently implemented.