1-2hit |
Jaeyul CHOO Chihyun CHO Hosung CHOO
This paper designs tag antennas to satisfy three key goals: mounting on very small objects, extending the reading range with planar structures, and maintaining stable performance on various materials. First, the size of the tag is reduced up to 17% compared to the half-wavelength dipole without a large reduction in bandwidth and efficiency by introducing an inductively coupled feed structure. Second, the reading range is increased to 1.68 times that of the reference dipole tags while maintaining the planar structure using circular polarization characteristics. Finally, a stable reading range is achieved with a deviation in the reading range of only 30% of that of commercial tags on various objects by employing the capacitively-loaded and T-matching network.
Gangil BYUN Seung Mo SEO Ikmo PARK Hosung CHOO
This paper proposes the design of small CRPA arrays for dual-band Global Positioning System (GPS) applications. The array consists of five elements and is mounted on a circular ground platform with a diameter of 15-cm. Each antenna element has a coupled feed structure and consists of a feed patch and two radiating patches for dual-band operation. An external chip coupler is utilized for a broad circular polarization (CP) bandwidth, and its measured characteristics are taken into account in our simulation for more accurate performance estimation. Detailed parameters are optimized by using a genetic algorithm (GA) in conjunction with the FEKO EM simulator. The optimized antenna is fabricated on a ceramic substrate, and its performance is measured in a full anechoic chamber. Furthermore, a field test is also conducted to verify the signal-to-noise ratio (SNR) for real GPS satellite signals. The results prove that the proposed array is suitable for use in GPS CRPA applications.