The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Huamin YANG(2hit)

1-2hit
  • MF-CNN: Traffic Flow Prediction Using Convolutional Neural Network and Multi-Features Fusion

    Di YANG  Songjiang LI  Zhou PENG  Peng WANG  Junhui WANG  Huamin YANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/05/20
      Vol:
    E102-D No:8
      Page(s):
    1526-1536

    Accurate traffic flow prediction is the precondition for many applications in Intelligent Transportation Systems, such as traffic control and route guidance. Traditional data driven traffic flow prediction models tend to ignore traffic self-features (e.g., periodicities), and commonly suffer from the shifts brought by various complex factors (e.g., weather and holidays). These would reduce the precision and robustness of the prediction models. To tackle this problem, in this paper, we propose a CNN-based multi-feature predictive model (MF-CNN) that collectively predicts network-scale traffic flow with multiple spatiotemporal features and external factors (weather and holidays). Specifically, we classify traffic self-features into temporal continuity as short-term feature, daily periodicity and weekly periodicity as long-term features, then map them to three two-dimensional spaces, which each one is composed of time and space, represented by two-dimensional matrices. The high-level spatiotemporal features learned by CNNs from the matrices with different time lags are further fused with external factors by a logistic regression layer to derive the final prediction. Experimental results indicate that the MF-CNN model considering multi-features improves the predictive performance compared to five baseline models, and achieves the trade-off between accuracy and efficiency.

  • CASEformer — A Transformer-Based Projection Photometric Compensation Network

    Yuqiang ZHANG  Huamin YANG  Cheng HAN  Chao ZHANG  Chaoran ZHU  

     
    PAPER

      Pubricized:
    2023/09/29
      Vol:
    E107-D No:1
      Page(s):
    13-28

    In this paper, we present a novel photometric compensation network named CASEformer, which is built upon the Swin module. For the first time, we combine coordinate attention and channel attention mechanisms to extract rich features from input images. Employing a multi-level encoder-decoder architecture with skip connections, we establish multiscale interactions between projection surfaces and projection images, achieving precise inference and compensation. Furthermore, through an attention fusion module, which simultaneously leverages both coordinate and channel information, we enhance the global context of feature maps while preserving enhanced texture coordinate details. The experimental results demonstrate the superior compensation effectiveness of our approach compared to the current state-of-the-art methods. Additionally, we propose a method for multi-surface projection compensation, further enriching our contributions.