1-2hit |
By exploiting the inherent sparsity of wireless propagation channels, the theory of compressive sensing (CS) provides us with novel technologies to estimate the channel state information (CSI) that require considerably fewer samples than traditional pilot-aided estimation methods. In this paper, we describe the block-sparse structure of the fast time-varying channel and apply the model-based CS (MCS) for channel estimation in orthogonal frequency division multiplexing (OFDM) systems. By exploiting the structured sparsity, the proposed MCS-based method can further compress the channel information, thereby allowing a more efficient and precise estimation of the CSI compared with conventional CS-based approaches. Furthermore, a specific pilot arrangement is tailored for the proposed estimation scheme. This so-called random grouped pilot pattern can not only effectively protect the measurements from the inter-carrier interference (ICI) caused by Doppler spreading but can also enable the measurement matrix to meet the conditions required for MCS with relatively high probability. Simulation results demonstrate that our method has good performance at high Doppler frequencies.
Compressive sensing (CS)-based channel estimation considerably reduces pilot symbols usage by exploiting the sparsity of the propagation channel in the delay-Doppler domain. In this paper, we consider the application of Bayesian approaches to the sparse channel estimation in orthogonal frequency division multiplexing (OFDM) systems. Taking advantage of the block-sparse structure and statistical properties of time-frequency selective channels, the proposed Bayesian method provides a more efficient and accurate estimation of the channel status information (CSI) than do conventional CS-based methods. Moreover, our estimation scheme is not limited to the Gaussian scenario but is also available for channels that have non-Gaussian priors or unknown probability density functions. This characteristic is notably useful when the prior statistics of channel coefficients cannot be precisely estimated. We also design a combo pilot pattern to improve the performance of the proposed estimation scheme. Simulation results demonstrate that our method performs well at high Doppler frequencies.