The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Huiyu YE(2hit)

1-2hit
  • Semi-Blind Interference Cancellation with Single Receive Antenna for Heterogeneous Networks

    Huiyu YE  Kazuhiko FUKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/06/28
      Vol:
    E101-B No:1
      Page(s):
    232-241

    In order to cope with severe interference in heterogeneous networks, this paper proposes a semi-blind interference cancellation scheme, which does not require multiple receive antennas or knowledge about training sequences of the interfering signals. The proposed scheme performs joint channel estimation and signal detection (JCESD) during the training period in order to blindly estimate channels of the interfering signals. On the other hand, maximum likelihood detection (MLD), which can be considered the optimum JCESD, must perform channel estimation for all transmitted signal candidates of the interfering signals and must search for the most likely signal candidate. Therefore, MLD incurs a prohibitive amount of computational complexity. To reduce such complexity drastically, the proposed scheme enhances the quantized channel approach, and applies the enhanced version to JCESD. In addition, a recalculation scheme is introduced to avoid inaccurate channel estimates due to local minima. Using the estimated channels, the proposed scheme performs multiuser detection (MUD) of the data sequences in order to cancel the interference. Computer simulations show that the proposed scheme outperforms a conventional scheme based on the Viterbi algorithm, and can achieve almost the same average bit error rate performance as the MUD with channels estimated from sufficiently long training sequences of both the desired signal and the interfering signals, while reducing the computational complexity significantly compared with full search involving all interfering signal candidates during the training period.

  • Semi-Blind Interference Cancellation with Multiple Receive Antennas for MIMO Heterogeneous Networks

    Huiyu YE  Kazuhiko FUKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/11/10
      Vol:
    E101-B No:5
      Page(s):
    1299-1310

    Our previous work proposed a semi-blind single antenna interference cancellation scheme to cope with severe inter-cell interference in heterogeneous networks. This paper extends the scheme to allow multiple-receive-antenna implementation. It does not require knowledge of the training sequences of interfering signals and can cancel multiple interfering signals irrespective of the number of receive antennas. The proposed scheme applies an enhanced version of the quantized channel approach to suboptimal joint channel estimation and signal detection (JCESD) during the training period in order to blindly estimate channels of the interfering signals, while reducing the computational complexity of optimum JCESD drastically. Different from the previous work, the proposed scheme applies the quantized channel generation and local search at each individual receive antenna so as to estimate transmitted symbol matrices during the training period. Then, joint estimation is newly introduced in order to estimate a channel matrix from the estimated symbol matrices, which operates in the same manner as the expectation maximization (EM) algorithm and considers signals received at all receive antennas. Using the estimated channels, the proposed scheme performs multiuser detection (MUD) during the data period under the maximum likelihood (ML) criterion in order to cancel the interference. Computer simulations with two receive antennas under two-interfering-stream conditions show that the proposed scheme outperforms interference rejection combining (IRC) with perfect channel state information (CSI) and MUD with channels estimated by a conventional scheme based on the generalized Viterbi algorithm, and can achieve almost the same average bit error rate (BER) performance as MUD with channels estimated from sufficiently long training sequences of both the desired stream(s) and the interfering streams, while reducing the computational complexity significantly compared with full search involving all interfering signal candidates during the training period.