The search functionality is under construction.

Author Search Result

[Author] Hyeongboo BAEK(4hit)

1-4hit
  • Preemptive Real-Time Scheduling Incorporating Security Constraint for Cyber Physical Systems

    Hyeongboo BAEK  Jaewoo LEE  Yongjae LEE  Hyunsoo YOON  

     
    PAPER-Dependable Computing

      Pubricized:
    2016/04/22
      Vol:
    E99-D No:8
      Page(s):
    2121-2130

    Since many cyber-physical systems (CPSs) manipulate security-sensitive data, enhancing the quality of security in a CPS is a critical and challenging issue in CPS design. Although there has been a large body of research on securing general purpose PCs, directly applying such techniques to a CPS can compromise the real-time property of CPSs since the timely execution of tasks in a CPS typically relies on real-time scheduling. Recognizing this property, previous works have proposed approaches to add a security constraint to the real-time properties to cope with the information leakage problem that can arise between real-time tasks with different security levels. However, conventional works have mainly focused on non-preemptive scheduling and have suggested a very naive approach for preemptive scheduling, which shows limited analytical capability. In this paper, we present a new preemptive fixed-priority scheduling algorithm incorporating a security constraint, called lowest security-level first (LSF) and its strong schedulability analysis to reduce the potential of information leakage. Our simulation results show that LSF schedulability analysis outperforms state-of-the-art FP analysis when the security constraint has reasonable timing penalties.

  • Proof and Evaluation of Improved Slack Reclamation for Response Time Analysis of Real-Time Multiprocessor Systems

    Hyeongboo BAEK  Donghyouk LIM  Jinkyu LEE  

     
    LETTER-Software System

      Pubricized:
    2018/05/02
      Vol:
    E101-D No:8
      Page(s):
    2136-2140

    RTA (Response time analysis) is a popular technique to guarantee timing requirements for a real-time system, and therefore the RTA framework has been widely studied for popular scheduling algorithms such as EDF (Earliest Deadline First) and FP (Fixed Priority). While a number of extended techniques of RTA have been introduced, some of them cannot be used since they have not been proved and evaluated in terms of their correctness and empirical performance. In this letter, we address the state of the art technique of slack reclamation of the existing generic RTA framework for multiprocessors. We present its mathematical proof of correctness and empirical performance evaluation, which have not been revealed to this day.

  • Incorporating Security Constraints into Mixed-Criticality Real-Time Scheduling

    Hyeongboo BAEK  Jinkyu LEE  

     
    PAPER-Software System

      Pubricized:
    2017/05/31
      Vol:
    E100-D No:9
      Page(s):
    2068-2080

    While conventional studies on real-time systems have mostly considered the real-time constraint of real-time systems only, recent research initiatives are trying to incorporate a security constraint into real-time scheduling due to the recognition that the violation of either of two constrains can cause catastrophic losses for humans, the system, and even environment. The focus of most studies, however, is the single-criticality systems, while the security of mixed-criticality systems has received scant attention, even though security is also a critical issue for the design of mixed-criticality systems. In this paper, we address the problem of the information leakage that arises from the shared resources that are used by tasks with different security-levels of mixed-criticality systems. We define a new concept of the security constraint employing a pre-flushing mechanism to cleanse the state of shared resources whenever there is a possibility of the information leakage regarding it. Then, we propose a new non-preemptive real-time scheduling algorithm and a schedulability analysis, which incorporate the security constraint for mixed-criticality systems. Our evaluation demonstrated that a large number of real-time tasks can be scheduled without a significant performance loss under a new security constraint.

  • Incorporating Zero-Laxity Policy into Mixed-Criticality Multiprocessor Real-Time Systems

    Namyong JUNG  Hyeongboo BAEK  Donghyouk LIM  Jinkyu LEE  

     
    PAPER-Systems and Control

      Vol:
    E101-A No:11
      Page(s):
    1888-1899

    As real-time embedded systems are required to accommodate various tasks with different levels of criticality, scheduling algorithms for MC (Mixed-Criticality) systems have been widely studied in the real-time systems community. Most studies have focused on MC uniprocessor systems whereas there have been only a few studies to support MC multiprocessor systems. In particular, although the ZL (Zero-Laxity) policy has been known to an effective technique in improving the schedulability performance of base scheduling algorithms on SC (Single-Criticality) multiprocessor systems, the effectiveness of the ZL policy on MC multiprocessor systems has not been revealed to date. In this paper, we focus on realizing the potential of the ZL policy for MC multiprocessor systems, which is the first attempt. To this end, we design the ZL policy for MC multiprocessor systems, and apply the policy to EDF (Earliest Deadline First), yielding EDZL (Earliest Deadline first until Zero-Laxity) tailored for MC multiprocessor systems. Then, we develop a schedulability analysis for EDZL (as well as its base algorithm EDF) to support its timing guarantee. Our simulation results show a significant schedulability improvement of EDZL over EDF, demonstrating the effectiveness of the ZL policy for MC multiprocessor systems.