The search functionality is under construction.

Author Search Result

[Author] Hyuck-Chan KWON(2hit)

1-2hit
  • Multilevel Control Signaling for Hybrid ARQ in the UMTS HSDPA System

    Chang-Rae JEONG  Seung-Hoon HWANG  Hyuck-Chan KWON  Younghoon WHANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:1
      Page(s):
    334-337

    In this paper, we propose and analyze a multi-level acknowledgement scheme for hybrid ARQ (H-ARQ) systems, which modifies the general ACK/NAK signals to represent multilevel information. For instance, the other signals except the ACK/NAK signals may be used for scheduling of retransmission in the H-ARQ scheme, which results in increasing the resolution of the uplink channel estimation signals. Simulation results demonstrate that when the retransmission interval is set to the optimal length, the proposed H-ARQ scheme shows a 0.5-2 dB gain with properly selected parameters.

  • Turbo Coded CDMA System with an Interference Cancellation Technique

    Hyuck-Chan KWON  Ki-Jun KIM  Byeong-Hoon PARK  Keum-Chan WHANG  

     
    PAPER-Wireless Communication Systems

      Vol:
    E81-B No:12
      Page(s):
    2326-2333

    In this paper, we suggest the interference cancellation (IC) technique suitable for turbo coded code division multiple access (CDMA) systems, that merges IC processes into turbo decoding processes to improve system performance and reduce system complexity. To ensure the reliability of the temporary decision bits for cancellation, we use cyclic redundancy code (CRC) check as a measure. Prior to design turbo coded CDMA system, we first derive the optimized polynomials of low-rate turbo codes appropriate to CDMA systems. According to the simulation results with setting the processing gain (PG) to 120, the turbo coded CDMA system with the proposed IC technique can accommodate 60 users over additive white Gaussian noise (AWGN) channel when signal to noise ratio (SNR) is about 2. 5 dB and required frame error ratio (FER) is 10-2. Compared this result with the performance of single user's system, it requires only additional 1 dB SNR.