1-4hit |
Hyung Seok KIM Seok LEE Namhoon KIM
In this paper, an effective congestion control algorithm is proposed to increase the end-to-end delivery success ratio of upstream traffic by reduction of buffer drop probabilities and their deviation in wireless sensor networks. According to the queue length of parent and child nodes, each child node chooses one of the parents as the next hop to the sink and controls the delay before transmission begins. It balances traffics among parents and mitigates congestion based on congestion level of a node. Simulation results show that the proposed algorithm reduces buffer drop probabilities and their deviation and increases the end-to-end delivery success ratio in wireless sensor networks.
Youn-Soo KIM Eun Ju LEE Bong Soo KIM Hyung Seok KIM
ZigBee recently has been used a lot in wireless sensor networks because of its low power consumption and affordable chips. However, ZigBee's existing hierarchical routing algorithm has a disadvantage in that a node may communicate with a nearby node over several hops. In this letter we propose a Quasi-Hierarchical Routing (QHR) algorithm that can improve the ZigBee hierarchical routing method's inefficiency by using brief information on neighbors within radio range. The network simulation evaluates this QHR's performance by comparing it to other ZigBee routing schemes.
The IEEE 802.16j mobile multi-hop relay (MMR) is studied to improve throughput, extend coverage, and increase capacity. Mobile relay stations attached to vehicles make arbitrary movements and have interference with other base stations or relay stations, thus lowering service functions. This study sets out to suggest an interference detection and avoidance method and evaluates its performance in order to help introduce a mobile relay station for vehicle mounting in a mobile multi-hop relay network. The proposed approach would be implemented by the addition of MAC management messages at a base or relay station instead of the change of mobile station.
In Hwan LEE Sooyoung YANG Sung Ho CHO Hyung Seok KIM
The wireless robotic sensor network (WRSN) is a combination of a mobile robot and wireless sensor networks. In WRSN, robots perform high-level missions such as human rescue, exploration in dangerous areas, and maintenance and repair of unmanned networks in cooperation with surrounding sensor nodes. In such a network, robots should move to the accident site as soon as possible. This paper proposes a distance-aware robot routing (DAR) algorithm, which focuses on how to pick the shortest path for the mobile robot by considering characteristics different from packet routing. Simulations are performed to demonstrate the benefits of using the proposed algorithm.