1-2hit |
Yongwon JEONG Sangjun LIM Young Kuk KIM Hyung Soon KIM
We present an acoustic model adaptation method where the transformation matrix for a new speaker is given by the product of bases and a weight matrix. The bases are built from the parallel factor analysis 2 (PARAFAC2) of training speakers' transformation matrices. We perform continuous speech recognition experiments using the WSJ0 corpus.
We present the adaptation of the acoustic models of hidden Markov models (HMMs) to the target speaker and noise environment using bilinear models. Acoustic models trained from various speakers and noise conditions are decomposed to build the bases that capture the interaction between the two factors. The model for the target speaker and noise is represented as a product of bases and two weight vectors. In experiments using the AURORA4 corpus, the bilinear model outperforms the linear model.