The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Hyunha NAM(2hit)

1-2hit
  • Computationally Efficient Multi-Label Classification by Least-Squares Probabilistic Classifiers

    Hyunha NAM  Hirotaka HACHIYA  Masashi SUGIYAMA  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E96-D No:8
      Page(s):
    1871-1874

    Multi-label classification allows a sample to belong to multiple classes simultaneously, which is often the case in real-world applications such as text categorization and image annotation. In multi-label scenarios, taking into account correlations among multiple labels can boost the classification accuracy. However, this makes classifier training more challenging because handling multiple labels induces a high-dimensional optimization problem. In this paper, we propose a scalable multi-label method based on the least-squares probabilistic classifier. Through experiments, we show the usefulness of our proposed method.

  • Direct Density Ratio Estimation with Convolutional Neural Networks with Application in Outlier Detection

    Hyunha NAM  Masashi SUGIYAMA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2015/01/28
      Vol:
    E98-D No:5
      Page(s):
    1073-1079

    Recently, the ratio of probability density functions was demonstrated to be useful in solving various machine learning tasks such as outlier detection, non-stationarity adaptation, feature selection, and clustering. The key idea of this density ratio approach is that the ratio is directly estimated so that difficult density estimation is avoided. So far, parametric and non-parametric direct density ratio estimators with various loss functions have been developed, and the kernel least-squares method was demonstrated to be highly useful both in terms of accuracy and computational efficiency. On the other hand, recent study in pattern recognition exhibited that deep architectures such as a convolutional neural network can significantly outperform kernel methods. In this paper, we propose to use the convolutional neural network in density ratio estimation, and experimentally show that the proposed method tends to outperform the kernel-based method in outlying image detection.