1-1hit |
Hyunho PARK Hyeong Ho LEE Yong-Tae LEE
Wi-Fi Direct is a promising and available technology for device-to-device (D2D) proximity communications. To improve the performances of Wi-Fi Direct communication, optimized radio resource allocations are important. This paper proposes network assisted Wi-Fi Direct (NAWD), which operates based on the media independent services framework of IEEE 802.21 standard, for optimizing radio resource allocations. The NAWD is enhanced Wi-Fi Direct with the assistance of infrastructure networks (e.g., cellular network) and allocates radio resources (e.g., frequency channels and transmit power) to reduce radio interferences among Wi-Fi Direct devices (e.g., smart phones and set-top boxes). The NAWD includes mechanisms for gathering configuration information (e.g., location information and network connection information) of Wi-Fi Direct devices and allocating optimized radio resources (e.g., frequency channels and transmit power) to reduce radio interferences among Wi-Fi Direct devices. Simulation results show that the proposed NAWD increases significantly SINR, power efficiency, and areal capacity compared to legacy Wi-Fi Direct, where areal capacity is total traffic throughput per unit area.