The search functionality is under construction.

Author Search Result

[Author] I-Te LIN(4hit)

1-4hit
  • Primary Traffic Based Cooperative Multihop Relaying with Preliminary Farthest Relay Selection in Cognitive Radio Ad Hoc Networks

    I-Te LIN  Iwao SASASE  

     
    PAPER-Network

      Vol:
    E95-B No:8
      Page(s):
    2586-2599

    We propose a primary traffic based multihop relaying algorithm with cooperative transmission (PTBMR-CT). It enlarges the hop transmission distances to reduce the number of cognitive relays on the route from the cognitive source (CS) to the cognitive destination (CD). In each hop, from the cognitive nodes in a specified area depending on whether the primary source (PS) transmits data to the primary destination (PD), the cognitive node that is farthest away from the cognitive relay that sends data is selected as the other one that receives data. However, when the PS is transmitting data to the PD, from the cognitive nodes in a specified area, another cognitive node is also selected and prepared to be the cognitive relay that receives data of cooperative transmission. Cooperative transmission is performed if the PS is still transmitting data to the PD when the cognitive relay that receives data of the next hop transmission is being searched. Simulation results show that the average number of cognitive relays is reduced by PTBMR-CT compared to conventional primary traffic based farthest neighbor relaying (PTBFNR), and PTBMR-CT outperforms conventional PTBFNR in terms of the average end-to-end reliability, the average end-to-end throughput, the average required transmission power of transmitting data from the CS to the CD, and the average end-to-end transmission latency.

  • Analytical Study for Performance Evaluation of Signal Detection Scheme to Allow the Coexistence of Additional and Existing Radio Communication Systems

    Kanshiro KASHIKI  I-Te LIN  Tomoki SADA  Toshihiko KOMINE  Shingo WATANABE  

     
    PAPER

      Vol:
    E97-B No:2
      Page(s):
    295-304

    This paper describes an analytical study of performance of a proposed signal detection scheme that will allow coexistence of an additional radio communication system (generally, secondary system) in the service area where the existing communication system (primary system) is operated. Its performance characteristics are derived by an analytical method based on stochastic theory, which is subsequently validated by software simulation. The main purpose of the detection scheme is to protect the primary system from the secondary system. In such a situation, the signals of the primary system and secondary system may be simultaneously received in the signal detector. One application of such a scheme is D-to-D (Device-to-Device) communication, whose system concept including the detection scheme is briefly introduced. For improved secondary signal detection, we propose the signal cancellation method of the primary system and the feature detection method of the secondary system signal. We evaluate the performance characteristics of the detection scheme in terms of “probability of correct detection”. We reveal that an undesired random component is produced in the feature detection procedure when two different signals are simultaneously received, which degrades the detection performance. Such undesired component is included in the analytical equations. We also clarify that the cancellation scheme improves the performance, when the power ratio of the primary signal to secondary signal is higher than 20-22dB.

  • Distributed Ad Hoc Cooperative Routing in Cluster-Based Multihop Networks

    I-Te LIN  Iwao SASASE  

     
    PAPER-Network

      Vol:
    E94-B No:2
      Page(s):
    444-454

    Ad Hoc Routing (AHR) was proposed to replace optimal routing in cluster-based multihop networks since it offers lower implementation complexity. However, this complexity reduction comes at the cost of an increase in the required transmission power. In addition, when the conventional distributed relay selection is applied to implement AHR, another increase in the required transmission power occurs due to the receiver selection error. In this paper, Ad Hoc Cooperative Routing (AHCR) that integrates the cooperative transmission with AHR is presented to reduce the difference between the required transmission power of AHR and that of optimal routing. Besides, Distributed Ad Hoc Cooperative Routing (DAHCR) scheme 1 that combines the cooperative transmission with AHR is proposed to reduce the difference between the required transmission power of DAHR and that of AHR. We then address the problem of DAHCR scheme 1 and propose DAHCR scheme 2. Simulation results show that the required transmission power of AHCR and DAHCR scheme 1 is less than that of AHR and DAHR, respectively. In addition, DAHCR scheme 2 further reduces the required transmission power of DAHCR scheme 1. On the other hand, DAHCR scheme 1 increases the complexity by 43% compared to DAHR. Besides, DAHCR scheme 2 increases the complexity by 1.97% compared to DAHCR scheme 1.

  • Asynchronous Receiver-Initiated MAC Protocol Exploiting Stair-Like Sleep in Wireless Sensor Networks

    Takahiro WADA  I-Te LIN  Iwao SASASE  

     
    PAPER-Network

      Vol:
    E96-B No:1
      Page(s):
    119-126

    We propose the asynchronous receiver-initiated MAC protocol with the stair-like sleep mode; each node reduces its own sleep time by the sleep-change-rate depending on the number of hops from the source to the sink in wireless sensor networks (WSNs). Using the stair-like sleep approach, our protocol achieves high delivery ratio, low packet delay, and high energy efficiency due to the reduction in idle listening time. Our protocol can formulate the upper bound of the idle listening time because of the feature that the sleep time decreases in a geometric progression, and the reduction of the idle listening time is obtained by using the stair-like sleep approach. In our proposed scheme, the sink calculates the sleep change rate based on the number of hops from the source to the sink. By using the control packets which have the role of the acknowledgment (ACK), our proposed protocol can achieve the stair-like sleep with no additional control packets. In addition, even in the network condition that multi-targets are detected, and the number of hops to the sink are changed frequently, our proposed protocol can change the sleep change rate adaptively because the sink can always obtain the number of hops from the source to the sink. Simulation results show that the proposed protocol can improve the performance in terms of the packet delivery ratio, the packet delay, and the energy efficiency compared to the conventional receiver-initiated MAC (RI-MAC) protocol.