The search functionality is under construction.

Author Search Result

[Author] Ijaz Mansoor QURESHI(4hit)

1-4hit
  • Particle Swarm Optimization Assisted Multiuser Detection along with Radial Basis Function

    Muhammad ZUBAIR  Muhammad Aamir Saleem CHOUDHRY  Aqdas Naveed MALIK  Ijaz Mansoor QURESHI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1861-1863

    In this work particle swarm optimization (PSO) aided with radial basis functions (RBF) has been suggested to carry out multiuser detection (MUD) for synchronous direct sequence code division multiple access (DS-CDMA) systems. The performance of the proposed algorithm is compared to that of other standard suboptimal detectors and genetic algorithm (GA) assisted MUD. It is shown to offer better performance than the others especially if there are many users.

  • Multiuser Detection for Asynchronous Multicarrier CDMA Using Particle Swarm Optimization

    Muhammad ZUBAIR  Muhammad A.S. CHOUDHRY  Aqdas NAVEED  Ijaz Mansoor QURESHI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:5
      Page(s):
    1636-1639

    Due to the computational complexity of the optimum maximum likelihood detector (OMD) growing exponentially with the number of users, suboptimum techniques have received significant attention. We have proposed the particle swarm optimization (PSO) for the multiuser detection (MUD) in asynchronous multicarrier code division multiple access (MC-CDMA) system. The performance of PSO based MUD is near optimum, while its computational complexity is far less than OMD. Performance of PSO-MUD has also been shown to be better than that of genetic algorithm based MUD (GA-MUD) at practical SNR.

  • Visual Aerial Navigation through Adaptive Prediction and Hyper-Space Image Matching

    Muhammad Anwaar MANZAR  Tanweer Ahmad CHEEMA  Abdul JALIL  Ijaz Mansoor QURESHI  

     
    PAPER-Pattern Recognition

      Vol:
    E92-D No:2
      Page(s):
    283-297

    Image matching is an important area of research in the field of artificial intelligence, machine vision and visual navigation. This paper presents a new image matching scheme suitable for visual navigation. In this scheme, gray scale images are sliced and quantized to form sub-band binary images. The information in the binary images is then signaturized to form a vector space and the signatures are sorted as per significance. These sorted signatures are then normalized to transform the represented image pictorial features in a rotation and scale invariant form. For the image matching these two vector spaces from both the images are compared in the transformed domain. This comparison yields efficient results directly in the image spatial domain avoiding the need of image inverse transformation. As compared to the conventional correlation, this comparison avoids the wide range of square error calculations all over the image. In fact, it directly guides the solution to converge towards the estimate given by the adaptive prediction for a high speed performance in an aerial video sequence. A four dimensional solution population scheme has also been presented with a matching confidence factor. This factor helps in terminating the iterations when the essential matching conditions have been achieved. The proposed scheme gives robust and fast results for normal, scaled and rotated templates. Speed comparison with older techniques shows the computational viability of this new technique and its much lesser dependence on image size. The method also shows noise immunity at 30 dB AWGN and impulsive noise.

  • Particle Swarm with Soft Decision for Multiuser Detection of Synchronous Multicarrier CDMA

    Muhammad ZUBAIR  Muhammad A.S. CHOUDHRY  Aqdas NAVEED  Ijaz Mansoor QURESHI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:5
      Page(s):
    1640-1643

    The computation involved in multiuser detection (MUD) for multicarrier CDMA (MC-CDMA) based on maximum likelihood (ML) principle grows exponentially with the number of users. Particle swarm optimization (PSO) with soft decisions has been proposed to mitigate this problem. The computational complexity of PSO, is comparable with genetic algorithm (GA), but is much less than the optimal ML detector and yet its performance is much better than GA.