The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Jae-In CHOI(2hit)

1-2hit
  • An Efficient Route Optimization Scheme for Multiple LMAs in PMIPv6 Domain

    Won-Kyeong SEO  Kang-Won LEE  Jae-In CHOI  You-Ze CHO  

     
    PAPER-Network

      Vol:
    E95-B No:10
      Page(s):
    3149-3157

    PMIPv6 is the IETF standard for a network-based localized mobility management protocol. In PMIPv6, MNs are topologically anchored at an LMA, which forwards all data for registered MNs. However, since all data packets destined for MNs always traverse the MNs' LMA, the end-to-end packet delay is increased. Therefore, this paper proposes an RO scheme in single and multiple LMA environments. For efficient RO possibility detection, an IPv6 RO extension header and initial RO procedure are proposed. Plus, an effective post-handover RO procedure is presented, along with a packet forwarding scheme to avoid the race condition problem during an RO operation. A Performance evaluation confirms that the proposed scheme can significantly reduce the end-to-end delay, signaling overhead, and RO latency when compared with existing RO schemes.

  • Distributed Mobility Management Scheme with Multiple LMAs in Proxy Mobile IPv6

    Won-Kyeong SEO  Jae-In CHOI  You-Ze CHO  

     
    PAPER-Network

      Vol:
    E97-B No:11
      Page(s):
    2327-2336

    The Internet Engineering Task Force (IETF) has been actively standardizing distributed mobility management (DMM) schemes with multiple Mobility Anchors (MAs). Yet, all existing schemes have limitations that preclude the efficient distribution of mobile data traffic, including single point failure problems, heavy tunneling overheads between MAs, and a restrictive traffic distribution for external nodes in a mobility domain. Therefore, this paper proposes an efficient mobility management scheme with a virtual Local Mobility Anchor (vLMA). While the vLMA is designed assuming multiple replicated LMAs for a PMIPv6 domain, it acts virtually as a single LMA for the internal and external nodes in the PMIPv6 domain. Furthermore, the vLMA distributes mobile data traffic using replicated LMAs, and routes packets via a replicated LMA on the optimal routing path. Performance evaluations confirm that the proposed scheme can distribute mobile data traffic more efficiently and reduce the end-to-end packet delay than the Distributed Local Mobility Anchor (DLMA) and the Proxy Mobile IPv6 (PMIPv6).