1-1hit |
Javad Rahimipour ANARAKI Mahdi EFTEKHARI Chang Wook AHN
Feature Selection (FS) is widely used to resolve the problem of selecting a subset of information-rich features; Fuzzy-Rough QuickReduct (FRQR) is one of the most successful FS methods. This paper presents two variants of the FRQR algorithm in order to improve its performance: 1) Combining Fuzzy-Rough Dependency Degree with Correlation-based FS merit to deal with a dilemma situation in feature subset selection and 2) Hybridizing the newly proposed method with the threshold based FRQR. The effectiveness of the proposed approaches are proven over sixteen UCI datasets; smaller subsets of features and higher classification accuracies are achieved.