1-1hit |
In this paper, we study an opportunistic scheduling scheme for the TDMA wireless network with relay stations. We model the time-varying channel condition of a wireless link as a stochastic process. Based on this model, we formulate an optimization problem for the opportunistic scheduling scheme that maximizes the expected system throughput while satisfying the QoS constraint of each user. In the opportunistic scheduling scheme for the system without relay stations, each user has only one communication path between the base station and itself, and thus only user selection is considered. However, in our opportunistic scheduling scheme for the system with relay stations, since there may exist multiple paths between the base station and a user, not only user selection but also path selection for the scheduled user is considered. In addition, we also propose an opportunistic time-sharing method for time-slot sharing between base station and relay stations. With the opportunistic time-sharing method, our opportunistic scheduling provides opportunistic resource sharing in three places in the system: user selection in a time-slot, path selection for the selected user, and time-slot sharing between base station and relay stations. Simulation results show that as the number of places that opportunistic resource sharing is applied to increases, the performance improvement also increases.