The search functionality is under construction.

Author Search Result

[Author] Jiageng CHEN(4hit)

1-4hit
  • Generalized Analysis on Key Collisions of Stream Cipher RC4

    Jiageng CHEN  Atsuko MIYAJI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E94-A No:11
      Page(s):
    2194-2206

    The fact that the stream cipher RC4 can generate colliding key pairs with hamming distance one was first discovered by Matsui in FSE 2010. This kind of weakness demonstrates that two different secret keys have the same effect on the cipher's encryption and the corresponding decryption procedure. In this paper, we further investigate the property of RC4 key collisions and achieved the following results: 1. We show that RC4 can generate colliding key pairs with various hamming distances, which cannot be generated by Matsui's pattern. We also give concrete examples of colliding key pairs with hamming distances greater than one. 2. We formalize RC4 colliding key pairs into two large patterns, namely, Transitional pattern and Self-Absorbing pattern. All the currently known colliding key pairs can be categorized into either two patterns. 3. We analyze both patterns and clarified the relations among the probability of key collision, key length and hamming distances which yield the colliding key pairs. 4. We demonstrate the vulnerability of key collisions by showing collisions of RC4-Hash function proposed in INDOCRYPT 2006. Some concrete experimental results of RC4-Hash collision are also given in this paper.

  • ExamChain: A Privacy-Preserving Onscreen Marking System Based on Consortium Blockchain

    Haoyang AN  Jiageng CHEN  

     
    PAPER

      Pubricized:
    2021/12/06
      Vol:
    E105-D No:2
      Page(s):
    235-247

    The development of educational informatization makes data privacy particularly important in education. With society's development, the education system is complicated, and the result of education evaluation becomes more and more critical to students. The evaluation process of education must be justice and transparent. In recent years, the Onscreen Marking (OSM) system based on traditional cloud platforms has been widely used in various large-scale public examinations. However, due to the excessive concentration of power in the existing scheme, the mainstream marking process is not transparent, and there are hidden dangers of black-box operation, which will damage the fairness of the examination. In addition, issues related to data security and privacy are still considered to be severe challenges. This paper deals with the above problems by providing secure and private transactions in a distributed OSM assuming the semi-trusted examination center. We have implemented a proof-of-concept for a consortium blockchain-based OSM in a privacy-preserving and auditable manner, enabling markers to mark on the distributed ledger anonymously. We have proposed a distributed OSM system in high-level, which provides theoretical support for the fair evaluation process of education informatization. It has particular theoretical and application value for education combined with blockchain.

  • Cryptanalysis of Stream Ciphers from a New Aspect: How to Apply Key Collisions to Key Recovery Attack

    Jiageng CHEN  Atsuko MIYAJI  

     
    PAPER-Cryptography

      Vol:
    E95-A No:12
      Page(s):
    2148-2159

    In this paper, we propose two new attacks against stream cipher RC4 which can recover the secret key in different length with practical computational amount. However, we have to point out that the proposed attacks are performed under relatively strong related key models. The same as the usual related key models, the adversary can specify the key differentials without knowing the target key information. However, in our attacks, only the relation between two keystream outputs or the two final internal states are required for the attacker. In addition, we discover a statistical bias of RC4 which is the key point to one of the attacks. Besides the inappropriate usage during the WEP environment, RC4 is still considered to be secure with the proper setting, and we believe the result of this paper will add to the understanding of RC4 and how to use it correctly and safely.

  • A Collision Attack on a Double-Block-Length Compression Function Instantiated with 8-/9-Round AES-256

    Jiageng CHEN  Shoichi HIROSE  Hidenori KUWAKADO  Atsuko MIYAJI  

     
    PAPER

      Vol:
    E99-A No:1
      Page(s):
    14-21

    This paper presents the first non-trivial collision attack on the double-block-length compression function presented at FSE 2006 instantiated with round-reduced AES-256: f0(h0||h1,M)||f1(h0||h1,M) such that f0(h0||h1, M) = Eh1||M(h0)⊕h0 , f1(h0||h1,M) = Eh1||M(h0⊕c)⊕h0⊕c , where || represents concatenation, E is AES-256 and c is a 16-byte non-zero constant. The proposed attack is a free-start collision attack using the rebound attack proposed by Mendel et al. The success of the proposed attack largely depends on the configuration of the constant c: the number of its non-zero bytes and their positions. For the instantiation with AES-256 reduced from 14 rounds to 8 rounds, it is effective if the constant c has at most four non-zero bytes at some specific positions, and the time complexity is 264 or 296. For the instantiation with AES-256 reduced to 9 rounds, it is effective if the constant c has four non-zero bytes at some specific positions, and the time complexity is 2120. The space complexity is negligible in both cases.