The search functionality is under construction.

Author Search Result

[Author] Jiang DENG(4hit)

1-4hit
  • An Efficient Algorithm of Discrete Particle Swarm Optimization for Multi-Objective Task Assignment

    Nannan QIAO  Jiali YOU  Yiqiang SHENG  Jinlin WANG  Haojiang DENG  

     
    PAPER-Distributed system

      Pubricized:
    2016/08/24
      Vol:
    E99-D No:12
      Page(s):
    2968-2977

    In this paper, a discrete particle swarm optimization method is proposed to solve the multi-objective task assignment problem in distributed environment. The objectives of optimization include the makespan for task execution and the budget caused by resource occupation. A two-stage approach is designed as follows. In the first stage, several artificial particles are added into the initialized swarm to guide the search direction. In the second stage, we redefine the operators of the discrete PSO to implement addition, subtraction and multiplication. Besides, a fuzzy-cost-based elite selection is used to improve the computational efficiency. Evaluation shows that the proposed algorithm achieves Pareto improvement in comparison to the state-of-the-art algorithms.

  • A Recommendation-Based Auxiliary Caching for Mapping Record

    Zhaolin MA  Jiali YOU  Haojiang DENG  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E107-B No:2
      Page(s):
    286-295

    Due to the increase in the volume of data and intensified concurrent requests, distributed caching is commonly used to manage high-concurrency requests and alleviate pressure on databases. However, there is limited research on distributed record mapping caching, and traditional caching algorithms have suboptimal resolution performance for mapping records that typically follow a long-tail distribution. To address the aforementioned issue, in this paper, we propose a recommendation-based adaptive auxiliary caching method, AC-REC, which delivers the primary cache record along with a list of additional cache records. The method uses request correlations as a basis for recommendations, customizes the number of additional cache entries provided, and dynamically adjusts the time-to-live. We conducted evaluations to compare the performance of our method against various benchmark strategies. The results show that our proposed method, as compared to the conventional LCE method, increased the cache hit ratio by an average of 20%, Moreover, this improvement is achieved while effectively utilizing the cache space. We believe that our strategy will contribute an effective solution to the related studies in both traditional network architecture and caching in paradigms like ICN.

  • An Improved Authenticated Encryption Scheme

    Fagen LI  Jiang DENG  Tsuyoshi TAKAGI  

     
    LETTER

      Vol:
    E94-D No:11
      Page(s):
    2171-2172

    Authenticated encryption schemes are very useful for private and authenticated communication. In 2010, Rasslan and Youssef showed that the Hwang et al.'s authenticated encryption scheme is not secure by presenting a message forgery attack. However, Rasslan and Youssef did not give how to solve the security issue. In this letter, we give an improvement of the Hwang et al.'s scheme. The improved scheme not only solves the security issue of the original scheme, but also maintains its efficiency.

  • k-Degree Layer-Wise Network for Geo-Distributed Computing between Cloud and IoT

    Yiqiang SHENG  Jinlin WANG  Haojiang DENG  Chaopeng LI  

     
    PAPER

      Vol:
    E99-B No:2
      Page(s):
    307-314

    In this paper, we propose a novel architecture for a deep learning system, named k-degree layer-wise network, to realize efficient geo-distributed computing between Cloud and Internet of Things (IoT). The geo-distributed computing extends Cloud to the geographical verge of the network in the neighbor of IoT. The basic ideas of the proposal include a k-degree constraint and a layer-wise constraint. The k-degree constraint is defined such that the degree of each vertex on the h-th layer is exactly k(h) to extend the existing deep belief networks and control the communication cost. The layer-wise constraint is defined such that the layer-wise degrees are monotonically decreasing in positive direction to gradually reduce the dimension of data. We prove the k-degree layer-wise network is sparse, while a typical deep neural network is dense. In an evaluation on the M-distributed MNIST database, the proposal is superior to a state-of-the-art model in terms of communication cost and learning time with scalability.